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Abstract 
Plant viruses are wise pathogens. The prevention of viral infection is a hard task for plants. However, during 

the evolutionary time, the "arms race" plants learn somehow to perceive and counterattack viral infection. 

Up to date is known plants have at least three important way to defend themselves from the viral infection, 

(1) dominant resistant; (2) recessive resistance; and (3) RNA silencing. Right after recognition of virus 

plants can begin a quite complex signaling pathway resulting in activation of many defense proteins and 

RNA silencing. Also, the plants could make some changes in essential proteins to viral infection, and then 

prevent viral replication and disease establishment. Here, will be reviewed the layers of antiviral immunity 

and they work together to establish a defense against the virus. Therefore, this knowledge can be beneficial 

to gene editing to engineer resistance to plant viruses. 
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Introduction 

 
Plant defense mechanisms are divided into two 

phases; (1) the Pathogen-Triggered Immunity 

(PTI), which is basal resistance and; (2) 

Effector-Triggered Immunity (ETI) or induced 

resistance, the second line of defense of plants 

[1,2]. The PTI response is rapidly active by 

plants after recognizing pathogens effectors, 

which could be MAMPS or PAMPs 

(Microbe/pathogen-associated molecular 

patterns, e.g., bacterial flagellin), DAMPs 

(Damage-associated molecular patterns, e.g., 

fungal haustorium), and VAMPs (Viral-

associated molecular patterns, e.g., double-

stranded RNA of viruses). The recognition of 

pathogens effectors is performed by Pattern 

Recognition Receptors (PRR) [3-6]. 

 

PRRs are proteins with an extracellular receptor 

domain, a transmembrane domain holding 

protein anchored into the plasma membrane, 

and a cytoplasmic domain with a kinase 

function necessary to trigger the signaling of 

defense responses within the cell [3]. After 
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recognition of molecular patterns by PRRs, 

several events are induced to prevent infection. 

Among those events, are included Ca2+ ion 

signaling and oxidative burst, mediated by 

Reactive Oxygen Species (ROS) and Reactive 

Nitrogen Species (RNS), as well as activation 

of different proteins such as mitogen-activated 

kinase (MAPKs) and calcium-dependent kinase 

(CDPK), which induce reprogramming of the 

expression of genes related to pathogenesis 

(PR) (Pathogenesis-Related Genes) [7,8]. 

 

In order to overcome the PTI, during the 

evolution time, pathogens acquired the ability 

to produce effector molecules to suppress PTI 

response, denominated Avr (avirulence 

proteins). In turn, plants co-evolved and started 

to synthesize proteins called Nucleotide 

Binding site Leucine-Rich Repeat (NBS-LRR), 

known as R proteins, which recognize these 

pathogens’ effector molecules [1,2,9].  

 

After recognition of pathogens’ effector 

molecules, several biochemical responses are 

induced, involving signal transduction, 

resulting in local and systemic responses. These 

initial responses are based on the oxidative 

burst, which releases ROS and RNS, resulting 

in the HR and programmed cell death (PCD) 

and induction of the expression of defense 

genes, systemic acquired resistance (SAR) [10]. 

SAR is essential in the defense of the plant for 

4 important reasons: 1) development of 

resistance at sites far from the site of infection 

[11]; 2) activity against a broad spectrum of 

pathogens, including viruses, fungi, bacteria 

and nematodes [10]; 3) long-lasting protection; 

and 4) expression of genes related to the 

synthesis of PR-proteins (Pathogenesis-Related 

Proteins) Based on the subject above-

mentioned, in this review will be addressed 

some specific aspects of plant-virus interaction. 

During plant-virus interaction many layers of 

resistance are active and combined could result 

in plant resistance to viruses. 

 

 

 

Plant-Virus Interaction 

 
Plant-virus interaction has some unique 

characteristics compared to other plant-

pathogen interactions. Hull [12], discusses the 

existence of several types of resistance in plants 

toward viruses. Also, Nicaise [13], argues that 

plant resistance against viruses is composed by 

dominant, recessive and RNAi-mediated 

resistance, which are complementary in such 

way and divided into a temporal scale and 

spatial always targeting the virus-derived 

molecules [13]. 

 

Dominant Resistance 

 

The dominant resistance is antiviral immunity 

of plant defense mediated by the NBS-LRR 

proteins, encoded by dominant resistance (R) 

genes, which recognize avirulence (Avr) gene 

products, initiating FTI defense mechanisms, 

and avoiding [14-16]. Several NBS-LRR 

proteins have been described as playing a 

crucial role in the defense against viral 

infection. These responses may be mediated by 

recognition, directly or indirectly, of viral 

effectors, or interaction with proteins that were 

modified by viral effectors. 

 

The defense responses mediated by NBS-LRR 

proteins are well described in Nicotiana 

tabacum plants, which have a well-studied 

dominant R-resistance gene encoding a TIR-

NBS-LRR protein that interacts with the 

replicase from TMV (Tobacco Mosaic Virus, 

Tobamovirus), triggering defense responses 

[17]. In addition, in Solanum tuberosum plants, 

the Rx1 gene encodes another type of CC-NB-

LRR type protein, which recognize the PVX 

viral capsid protein (Potex virus X, Potexvirus), 

inducing plant defense responses [18]. In both 

N. tabacum and S. tuberosum, activation of 

NBS-LRR initiates a cascade of MAPK 

proteins followed by an increase in Ca2 + 

influx, inducing HR and consequent PCD in 

order to prevent the virus (biotrophic 

organisms) spread to new healthy local and 

systemic tissue [19]. 
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The recognition of virus infection by plant also 

result in activation of many defense enzymes 

and deposition of phenolic compounds that can 

be useful in plant defense [20-22]. To support 

all the modification required to plants cope with 

the viral infection a high demand of energy is 

required, which is supported by the increase in 

photosynthesis index [20,23]. For example, 

cowpea (Vigna unguiculata) resistant to 

Cowpea severe mosaic virus (CPSMV) 

infection increase the activity of many enzymes 

such as Superoxide dismutase, phenylalanine 

ammonium lyase, guaiacol peroxidase as well 

as high photosynthetic rates [20,23].  

 

Recessive Resistance 

 
Recessive resistance (immunity) is 

characterized by the virus inability to infect the 

plant, due to the lack of compatibility between 

proteins encoded by the virus and plant 

proteins, a process necessary for viral 

replication and infection establishment [15]. 

Several genes involved in recessive resistance 

in plants have been identified, cloned and 

characterized in many plant cultures, all 

encoding proteins belonging to families of 

translation initiation factors (eIF) which are 

proteins necessary for viral replication in the 

host, indicating that type of resistance is more 

common against viruses [7,24]. 

 

Recessive resistance occurs preferentially in 

inoculated leaf protoplasts, where the viral 

replication process occurs, impairing virus 

multiplication in the cell as well as cell-to-cell 

movement [7,24]. The most studied recessive 

genes are those encoding translation initiation 

factors of the 4E (eIF4E) and 4G (eIF4G) 

families that together form the eIF4F complex, 

and their respective isoforms, eIF(iso)4E and 

eIF(iso)4G, which are essential in the 

translation process [25]. 

 

The eIF4E subunit is a 24 kDa protein, which 

helps the interaction between the mRNA with 

ribosomes in the plant [26]. The eIF4G (~200 

kDa) interacts with eIF4E and other initiation 

factors, including eIF4A, eIF3, and the 

polyadenine chain binding protein to stabilize 

the mRNA and the complex important for 

protein synthesis [15,27]. 

 

Studies with Potyviruses have shown that plant 

resistance may be associated with the inability 

of VPg (viral-genome linked protein) to bind to 

either eIF4E or eIF(iso)4E of plants, without 

this interaction virus cannot replicate in plant 

cells [28]. This inability to bind is the result of 

amino acid mutations exposed on the surface of 

the eIF4E preventing the recognition of eIF4E 

or eIF(iso)4E by VPg. 

 

RNA Silencing  

 
Recently, a new induced defense mechanism, 

which is present in plants, and virtually in all 

kingdoms, has been discovered, called RNA 

silencing (RNAi). RNAi is a small non-coding 

RNA molecule (sRNA) ranging in size from 

20-30 nucleotides. RNAi is a specific 

mechanism gene expression of inhibition. 

RNAi is involved in the regulation of various 

physiological processes of plants, is the main 

route of defense of plants against viruses [29]. 

 

The classification of sRNAs in plants is divided 

into two groups, according to their precursor 

and biogenesis pathway: miRNA (microRNA) 

and siRNA (small interfering RNA). The 

miRNAs are 21-24 nucleotides long and are 

originated from endogenous imperfect base 

pairing RNA molecules. The siRNAs have 23-

30 nucleotides of size and are generated from 

exogenous dsRNA (double-stranded RNAs), 

and require the activity of the RNA-dependent 

RNA polymerase enzyme [30,31]. 

 
The siRNAs control gene expression in plants 

or pathogens by two distinct mechanisms, 

posttranscriptional gene silencing (PTGS) or 

transcriptional gene silencing (TGS). Both 

miRNA and siRNA induce PTGS through 

cleavage / degradation or inhibition of 

translation by the so-called RNA-Induced 

Silencing Complex (RISC) [32,33], which is 
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formed by ribonucleoproteins, Dicers, TRBP 

(three double-stranded RNA-binding domains 

protein), AGO protein (RNase function) 

represents the center of the complex, and 

siRNA or miRNA.  

 

After recognition of dsRNA, which is exclusive 

from virus replication, Dicers enzymes degrade 

the dsRNA in small duplex fragments that are 

incorporated into the RISC cytoplasmic 

complex to degrade mRNA targeted. On the 

other hand, TGS acts on gene regulation 

through DNA methylation, histone 

modification or even chromatin modification, 

which is usually performed by siRNA, although 

some specific classes of miRNAs can perform 

this process [34]. 

 

Several studies cite the importance of RNAi 

silencing in plant defense against viruses. 

Recently, Garcia-Ruiz et al. [35], have shown 

that silencing by RNAi is essential for the 

defense of Arabidopsis plants against TuMV 

(Turnip Mosaic Virus, genus Potyvirus). Cruz 

and Aragão [36] demonstrated that transgenic 

bean plants, capable of inhibiting the 

production of the viral protease cofactor via 

RNAi, showed resistance to CPSMV when 

compared to untransformed plants susceptible 

to the virus.  

 

Conclusion 

 
As discussed above, the plant-virus interaction 

is quite complex involving many defense layers 

that work together to improve plant antiviral 

immunity. Although plants have defense 

mechanisms most case, they seem to be not 

enough to result in plant defense. Because in 

many case plants suffer from severe viral 

infection. Up to date, viral infections lead to 

millions of dollars worldwide every year.  

The understanding of plant defense 

mechanisms is important to produce mutant 

resistant plants that can be applied to reduce the 

losses caused by viral infection. As discussed 

above, the most promising to mutant production 

are recessive resistance and RNAi. The first can 

be done by producing plants mutant in the 

translation initiation factors. The second could 

be applied in the production of plants 

expressing some siRNA that target viral 

proteins. 
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