Pediatric Brain Tumors Diagnosis and Treatment

Abstract

Medulloblastoma is a rare but devastating brain cancer in children. The cancer can spread through the spinal fluid and deposit elsewhere in the brain or spine. Radiation therapy to the whole brain and spine, followed by an extra dose of radiation to the back of the brain, prevented this spread and became the standard of care. However, radiation used to treat such tumors causes damage to the brain and impairs cognitive function. It affects, especially in young patients whose brains are growing.

Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management

Introduction

Children with moderate-risk medulloblastoma may receive a lower-volume "amplification" of radiation at the end. A six-week course of radiation therapy maintains disease control in people who receive radiation over a wider area, but the researchers found that the dose of preventive radiation therapy given to the entire brain and spine over six weeks could not be sustained without reduced survival decrease. In addition, researchers have shown that cancer patients respond differently to treatment depending on the biology of the tumors, paving the way for future clinical trials for more targeted therapies. In children with medulloblastoma, the average five-year survival risk is 75 to 90 percent. In contrast, children with what is called "high-risk medulloblastoma" have a five-year survival rate of 50% to 75%. Other factors, such as the child's age and the extent to which the tumor has spread, help determine the risk group. For this study, researchers focused on patients with moderate-risk medulloblastoma. Medulloblastoma is a devastating disease. It is a malignant brain tumor that develops in the cerebellum, the lower back of the brain that is important for coordination of movement, speech and balance. Radiation therapy for this tumor can also be challenging, especially in younger children whose brains are active, in which case there is a balance between effective
tumor treatment without compromising children's ability to move, think and learn. Children at moderate risk for medulloblastoma usually undergo surgery to remove the tumor as much as possible. They also receive chemotherapy and radiation therapy to prevent the tumor from spreading to other parts of the brain and spine through the cerebrospinal fluid [1-510].

Results and Discussion

We wanted to see if we could confidently reduce the amount of radiation in these patients. This reduces the normal parts of the brain and reduces side effects for children with this type of brain cancer, while maintaining effective treatment. We found that we could safely reduce the size of the brain that receives more radiation at the end. We hope that such measures can help reduce the side effects of this treatment, especially in young patients. In collaboration with children's hospitals across the United States and internationally, researchers evaluated 464 patients with moderate-risk medulloblastoma between the ages of 3 and 21 years. Elderly patients received all standard doses because their brain development was not vulnerable to radiation. In addition, at the end of six weeks of treatment, all patients were randomly assigned two different doses of radiation "amplification". Patients who received less boost volume had a chance of surviving up to 82.5% and their disease did not get worse. In younger children, however, lower doses of radiation over six weeks did not result in a similar survival rate. From those who received standard doses of spinal cord radiation; About 83% survived five years and did not see a recurrence. This difference in survival was statistically significant.

Conclusions

We observed a higher rate of tumor recurrence and spread in young patients who received lower doses of spinal cord radiation therapy. It is generally not safe to reduce the radiation dose in children with medulloblastoma even if we know that low doses may reduce their cognitive function, so we are only conducting studies with these specific patients to see if we can safely reduce the radiation dose for Reduce them or not. The results of this study will play an important role in designing the next generation of clinical trials for children with medulloblastoma.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint Bio Spectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO43−) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.

19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 7: 112.

www.raftpubs.com
27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.
43. Heidari A. 2016. Linear and Non-Linear Quantitative Structure-Activity Relationship (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO$_2$) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs. J Integr Oncol. 5: 110.
52. Heidari A. 2016. Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). J Appl Computat Math. 5: 143.
69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au_{18-x}Ag_x/Cu_{x}(SPh-tBu)_{24} to Au_{36-x}Ag_x/Cu_x(SPh-tBu)_{24} (x = 1-12) Nanomolecules for Synthesis of Au_{14+} xAg_x/Cu_{x}([SR]_{60}, (SC_4)_{60}, (SC_6)_{60}, (SC_{12})_{60}, (PET)_{60}, (p-MBA)_{60}, (F)_{60}, (Cl)_{60}, (Br)_{60}, (I)_{60}, (At)_{60}, (Uus)_{60} and (SC_{6}H_{13})_{60}) Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.
71. Heidari A. 2017. Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Olympiadane Nanomolecules as Agent for Cancer Enzymotherapy, Immunotherapy,
82. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyaniline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.
Pediatric Brain Tumors Diagnosis and Treatment

DOI: https://doi.org/10.36811/jca.2021.110017

96. Heidari A. 2017. Transport Therapeutic Active Targeting of Human Brain Tumors Enable Anti-Cancer Nanodrugs Delivery across the Blood-Brain Barrier (BBB) to Treat Brain Diseases Using Nanoparticles and Nanocarriers
under Synchrotron Radiation. J Pharm Pharmaceutics. 4: 1-5.
108. Heidari A. 2017. A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy as Antibody-Drug Conjugate for the Treatment...

111. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

116. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kiloheertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.

119. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.

129. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.

143. Heidari A. 2018. Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Ann Biomet Biostat. 1: 1001.

165. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.
170. Heidari A. 2018. Uranocene (U(C₈H₈)₂) and Bis (Cyclooctatetraene)Iron (Fe(C₈H₈)₂ or Fe (COT)₂)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports. 1: 1-16.
171. Heidari A. 2018. Biomedical Systematic and Emerging Technological Study on Human

186. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebracon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-8.
188. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridyllic Acid or Deoxyuridyilate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxylrchothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 4: 46-67.
189. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.

198. Heidari A. 2018. C$_{60}$ and C$_{70}$-Encapsulating Carbon Nanotubes Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Integr Mol Med. 5: 1-8.

199. Heidari A. 2018. Two-Dimensional (2D) 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights. 3: 1-8.

204. Heidari A. 2018. 2-Amino-9-(((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-(((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-(((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One

221. Heidari A. 2019. The Hydrolysis Constants of Copper (I) (Cu⁺) and Copper (II) (Cu²⁺) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques. Glob Imaging Insights. 4: 1-8.

238. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

243. Heidari A, Esposito J, Caissutti A. 2019. Synchrotron and Synchrocyclotron Radiations 00 (nm) Technologies and Important Factors for Modulating Drug Metabolism and Elimination (ADME) as Vital Processes of Absorption, Distr...

www.raftpubs.com
International Journal of Advanced Chemistry. 8: 75-88.

426. Heidari A. 2020. A Biospectroscopic and Bioimaging Analysis of Imatinib Nanoparticles Aggregation Linked to DNA/RNA by Bcr-Abl
Tyrosine-Kinase Inhibitors (TKI) with Various Chain Length. Sci. Int. (Lahore), 32: 459-482.
483 Heidari A, Hotz M, MacDonald N, et al. 2021Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Rhodium (IV) Oxide (RhO₂) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.
484 Heidari A, Hotz M, MacDonald N, et al. 2021Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 150-194.
488. Heidari A, Hotz M, MacDonald N, et al. 2021Active Targeting of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Nanoparticles as Cancer Therapeutics Swell-up to Kill Cancer Cells under Synchrotron and Synchrocyclotron...

Authors’ Brief Biographies

Prof. Dr. I레za Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management, Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria, Australia and also in Nano chemistry and Modern Molecular Electronic-Structure Computations Theory from California South University (CSU), Irvine, California, USA. His research interests include Biophysical Chemistry, Biomolecular and Biomedical Spectroscopy, Quantum Chemistry, Nano chemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Chemistry, Computational Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry, Molecular Simulation, Pharmaceutical Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti-Cancer Nano Drugs, Nano Drugs Delivery, ATR-FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Biosensors, Biomarkers, Molecular Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylation & Hypomethylation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposiums and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Netherlands, Belgium, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia, Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various disciplines and trends in different
universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Syne, he has been awarded more than one thousand reputed international awards, prizes, scholarships and honors. Heretofore, he has multiple editorial duties in many reputed international and peer-reviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academic-scientific-research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Silvia Raymond, Ph.D., D.Sc. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Haidari at Cancer Research Institute (CRI) and Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Elena Loci is a Ph.D. Candidate under the Supervision of Professor Alireza Haidari at Cancer Research Institute (CRI) and Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.