Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

JCA: November-2021: Page No: 353-394

Universal Journal of Chemistry and Applications

Review Article

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

Alireza Heidari1,2,3,4*, Elena Locci1,2,3 and Silvia Raymond1,2,3

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
3Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
4American International Standards Institute, Irvine, CA 3800, USA

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Sep 16, 2021 / Accepted Date: Sep 30, 2021 / Published Date: Nov 03, 2021

Abstract

In this recent study, DNA data from 900 patients with colorectal cancer were reviewed. Analysis of the data showed a distinct mutation signature, a pattern that had never been identified before but indicated a type of DNA damage called "alkylation." Red meat contains chemicals that can cause alkylation. High levels of tumor alkylation damage are seen only in patients who consume an average of more than 150 grams of meat per day, roughly equivalent to two or more meals. On the other hand, a group of researchers in 2019 in a controversial conclusion stated that they do not have much confidence in reducing deaths from colon cancer by avoiding red meat.

Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari

Introduction

Consumption of red meat is less recommended in medical standards for the prevention of colon cancer, but the method of cell mutation is still unknown and all experts are convinced that these two factors are related. A new article in Cancer Discovery now identifies specific patterns of DNA damage from red meat-rich...
diets, in addition to treating the food as carcinogenic and increasing the likelihood of early detection of cancer. Introduces a new treatment method. Previous research has been largely epidemiological, meaning that people with the disease have been examined for eating habits, and researchers have found an association with the incidence of colon cancer. In 2019, a team of researchers, despite not being 100% sure, created a new wave when they announced that reducing meat consumption could prevent death from bowel cancer. When we say that red meat is carcinogenic and causes cancer it must be that there must be a good reason for doing so; Scientists have long ago discovered which chemical in cigarette smoke can cause cancer and how certain groups of ultraviolet light penetrate the skin and cause mutations in genes that control how cells grow and divide. Analysis of a symptom showed a distinct mutation, a pattern that had never been identified before, but indicated a type of DNA damage called "alkylation." Not all cells containing these mutations will necessarily become cancerous, and this symptom was present in some colon samples. The sign of the mutation before the patient was diagnosed with cancer was related to the consumption of processed and unprocessed red meat, not to the consumption of poultry, fish or other lifestyle factors that were examined. Some chemicals can cause alkylation by consuming red meat. Specific compounds are nitrogenous compounds that can be produced from each other, which are abundant in red meat, as well as nitrates, which are often found in processed meat. In this study, mutation patterns were strongly associated with the colon, the lower part of the intestine leading to the anal canal, where previous research has shown that red meat-related colon cancer is more common; In addition, among the genes most affected by alkylation were genes that, according to previous research, were the most important causes of colorectal cancer during mutations. Compared to patients with lower injury rates, they are 47% more likely to die from colon cancer [1-510].

Results and Discussion

Intestinal polyp is a pre-cancerous fleshy lesion that takes an average of about 10 years to develop into colon cancer. About 5 to 10 percent of polyps usually develop into cancer. Also, in people over 50, between 20 and 30%, intestinal polyp lesion occurs and it is necessary to examine and remove this lesion, because if the intestinal polyp remains in the body, it increases the risk of cancer. Polyps can be easily seen through screening, and with the help of colonoscopy we can remove this lesion from the body. Screening programs are required for people over the age of 50 and healthy people who have no symptoms or family history of the disease. With this method, we can identify and treat polyps. There are two methods for screening: One is a stool test, which is a home comfort test. If the test is positive, the person must remove the lesion with a colonoscopy, and if the test is negative, the person must repeat the test again the following year. The next method, which is much more accurate, is a colonoscopy, which should be performed every 10 years. This method easily identifies polyps and removes them from the body, and also diagnoses cancer at an early stage. Age is the most important cause of colon polyps. Age over 50 is a risk factor for this disease. Another factor that causes intestinal polyps is inactivity and obesity. People who are not active enough are more prone to polyps and bowel cancer than others. Foods such as red meat and fatty foods can also increase the risk of intestinal polyps, but fresh fruits and vegetables reduce the risk of intestinal polyps. Genetic factors are also a cause of intestinal polyps. People with a family history of polyps or bowel cancer are more likely to get the disease than normal people. There are currently the best colorectal cancer screening and prevention programs that identify cancerous lesions 10 years before they occur.
Conclusions

Future research may help physicians determine which patients are genetically predisposed to alkylation damage, so we are advised to reduce their red meat intake. Identifying patients who have already shown symptoms of the mutation can help identify those who are at higher risk for cancer or early-stage disease, and since alkylation damage appears to indicate survival, it can help physicians determine patients' prognosis. Finally, understanding the biological pathway through which colon cancer occurs paves the way for drugs that stop or reverse the process and prevent the disease. The message of this study is not that people should avoid red meat altogether: My advice is to have a balanced diet.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint Bio Spectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oritavancin, Telavancin and Dalbavancin Binding. Biochem Physiol. 5: 146.
18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol), and Absorbable Calcium (Ca\(^{2+}\)), Iron (II) (Fe\(^{2+}\)), Magnesium (Mg\(^{2+}\)), Phosphate (PO\(^{4-}\)) and Zinc (Zn\(^{2+}\)) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.
19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He\(^{2+}\)), Neon Dimer (Ne\(^{2+}\)), Argon Dimer (Ar\(^{2+}\)), Krypton Dimer (Kr\(^{2+}\)), Xenon Dimer (Xe\(^{2+}\)), Radon Dimer (Rn\(^{2+}\)) and Ununoctium Dimer (Uuo\(^{2+}\)) Molecular Cations. Chem Sci J. 7: 112.
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.
41. Heidari A. 2016. A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and

www.raftpubs.com
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

52. Heidari A. 2016. Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (α-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). J Appl Computat Math. 5: 143.
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand Induced Transformation of Au38-xAg6x/Cu4/(SPh-tBu)x to Au36-xAg6x/Cu4/(SPh-tBu)x/60 (x = 1-12) Nanomolecules for Synthesis of Au144-xAg6x/Cu4/(SPh-tBu)x/60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60 Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.
71. Heidari A. 2017. Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

Page: 360

82. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyaniline (PANI) in Situ During
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

94. Heidari A. 2017. Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta-2 Transferrin and Bacterioferritin-Based Anti-Cancer Nano Drugs Encapsulating Nanosphere as DNA-
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

106. Heidari A. 2017. Electron Phenomenological Spectroscopy, Electron...

116. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZH) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.

Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Int J Nanotechnol Nanomed. 3: 1-6.s
119. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.
129. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.
130. Heidari A. 2018. Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Scattering Spectroscopy (NISS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS)
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018
JCA: November-2021: Page No: 353-394

132. Heidari A. 2018. Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. EMS Pharma J. 1: 2-8.

142. Heidari A. 2018. Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

152. Heidari A. 2018. Homonuclear Correlation Experiments such as Homonuclear Single-Quantum Correlation Spectroscopy
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

JCA: November-2021: Page No: 353-394

(HSQC), Homonuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Homonuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Austin J Proteomics Bioinform & Genomics. 5: 1024.

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

and Initiation (EPPSI) Nano Molecules. Medical Research and Clinical Case Reports 2. 1: 113-126.
165. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.
170. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports. 1: 1-16.
175. Heidari A. 2018. A Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation
Spectroscopy (TOCSY), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations Using Cyclotron versus Synchrotron, Synchrocyclotron and the Large Hadron Collider (LHC) for Delivery of Proton and Helium Ion (Charged Particle) Beams for Oncology Radiotherapy. European Journal of Advances in Engineering and Technology. 5: 414-426.

186. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzidoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

188. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridyl Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Paraña Journal of Science and Education. 4: 46-67.

189. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.

204. Heidari A. 2018. 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One Enhanced Precatalyst
Investigation of DNA Damage Induced by Alkylation Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

www.raftpubs.com

221. Heidari A. 2019. The Hydrolysis Constants of Copper (I) (Cu⁺) and Copper (II) (Cu²⁺) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques. Glob Imaging Insights. 4: 1-8.

238. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

281. Heidari A, Esposito J, Caissutti A. 2019. 6-Methoxy-3,4-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolinol-7-yl] Oxy]-2-Methyl-1-(2-Methoxy-2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolinol-7-ol Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018
JCA: November-2021: Page No: 353-394

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018
JCA: November-2021: Page No: 353-394

409. Heidari A. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ9-Tetrahydrocannabinol (THC) [(–)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine

www.raftpubs.com
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

(1) investigation of DNA damage induced by alkylating agents and repair pathways by cooperating mechanisms driving the formation of colorectal adenomas and adenocarcinomas using DNA alkylation and DNA methylation.

423. Heidari A. 2020. Study of Stimulated Raman Biospectroscopy in Ritonavir as a
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

JCA: November-2021: Page No: 353-394

(IV) Oxide (RuO₂) and Ruthenium (VIII) Oxide (RuO₄) Nano Thin Films in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 61-105.

483 Heidari A, Hotz M, MacDonald N, et al. 2021Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Rhodium (IV) Oxide (RhO₂) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.

484 Heidari A, Hotz M, MacDonald N, et al. 2021Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 150-194.

488. Heidari A, Hotz M, MacDonald N, et al. 2021Active Targeting of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Nanoparticles as Cancer Therapeutics Swell-up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.

Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

Authors’ Brief Biographies

www.raftpubs.com
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

JCA: November-2021: Page No: 353-394

Prof. Dr. Iireza Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management, Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria, Australia and also in Nano chemistry and Modern Molecular Electronic-Structure Computations Theory from California South University (CSU), Irvine, California, USA. His research interests include Biophysical Chemistry, Biomolecular and Biomedical Spectroscopy, Quantum Chemistry, Nano chemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Chemistry, Computational Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry, Molecular Simulation, Pharmaceutical Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti-Cancer Nano Drugs, Nano Drugs Delivery, ATR-FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Biosensors, Biomarkers, Molecular Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylation & Hypomethylation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposiums and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Netherlands, Belgium, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia, Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various disciplines and trends in different universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Syne, he has been awarded more than one thousand reputed international awards, prizes, scholarships and honors. Heretofore, he has multiple editorial duties in many reputed international and peer-reviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academic-scientific-research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

www.raftpubs.com
Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation

DOI: https://doi.org/10.36811/jca.2021.110018

JCA: November-2021: Page No: 353-394

www.raftpubs.com

Elena Loci is a Ph.D. Candidate under the Supervision of Professor Alireza Haidari at Cancer Research Institute (CRI) and Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Silvia Raymond, Ph.D., D.Sc. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Haidari at Cancer Research Institute (CRI) and Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.