Screening for Lung Cancer with Low Dose Computed Tomography (LDCT)

Alireza Heidari¹,²,³,⁴*, Elena Locci¹,²,³ and Silvia Raymond¹,²,³

¹Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
²BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
³Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴American International Standards Institute, Irvine, CA 3800, USA

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Sep 16, 2021 / Accepted Date: Nov 08, 2021 / Published Date: Nov 11, 2021

Abstract
Using samples of small cell lung tumors, a research team led by biologist Dr. Raymond discovered two new ways to induce tumor cell death. By activating ferroptosis, one of two subtypes of tumor cells can be targeted: first, iron-dependent cell death due to oxidative stress, and second, oxidative stress. Therefore, cell death can also be induced in a different way. Both types of cell death must be caused by drugs at the same time to eliminate the majority of the tumor mass.

Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management

Cite this article as: Alireza Heidari, Elena Locci, Silvia Raymond. 2021. Screening for Lung Cancer with Low Dose Computed Tomography (LDCT). J Chem Appl. 3: 794-832.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari

Introduction

Despite many advances in treatment, the diagnosis of small cell lung cancer in particular means a poor prognosis. In Germany, a maximum of 8,000 new cases of small cell lung cancer (SCLC) are diagnosed each year. At the time of diagnosis, the cancer had found many holes to escape from the immune system. Cellular mechanisms, such as cell death regulated by apoptosis, are usually inactive at this stage. In this way, tumor cells can divide and spread almost without disturbance. High cell division is characteristic of small cell lung cancer, which initially promises a good response to chemotherapy. Unfortunately, in many cases the success of chemotherapy is short-lived because the tumor cells resist treatment quickly; In addition, the tumor is made up of not just one but several cell types (so-called subgroups), each with unique strategies for escaping lethal therapy. Scientists are trying to find out which cell death pathways are still available. The activity of the gene was compared between cells taken from the patient inside and outside the tumor. Significant signaling pathways for traditional cell death

www.raftpubs.com
mechanisms were already shut down in the tumor before treatment in the early stages. In contrast, genes important for activating iron-dependent cell death by oxidative damage (ferptosis) were strongly activated in cancer cells. Simply put, they found that small lung cancer cells could be divided into two subgroups: neurons and endocrine cells, and non-neuronal cells. In the neuronal and endocrine subtypes, there are more active genes that would otherwise normally be found in hormone-producing neurons. Cells belonging to another subgroup do not have this property and therefore belong to the group of non-neural cells. Several experiments have shown that non-neuronal cells can be killed using the butyrin sulfoxymine, which causes ferptosis [1-510].

Results and Discussion

In cells belonging to the subgroup of nerves, it was found that they protect themselves against oxidative stress by producing antioxidants, resulting in cell death. However, by adding the antioxidant inhibitor Auranofin, the researchers were able to kill these cells as well. Biologists have made important observations about the possible application of these findings in the treatment of small cell lung cancer; when targeting only one of two pathways, activating ferroptosis or preventing the production of antioxidants in a tumor consisting of cells in both subgroups, the cancer cells were able to escape lethal therapy. They did this by regulating their gene expression to reach a subgroup that could resist targeted individual therapy.

Conclusions

It is currently in clinical trials for cancer treatment. Auranofin, which inhibits the production of protective antioxidants in cancer cells, has been used to treat rheumatoid arthritis for decades. Future clinical trials using this combination therapy will determine the extent to which this targeted treatment option improves the prognosis of small cell lung cancer patients.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United States, the International Joint Bio Spectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca²⁺), Iron (II) (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄³⁻) and Zinc (Zn²⁺) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.
19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He₂⁺), Neon Dimer (Ne₂⁺), Argon Dimer (Ar₂⁺), Krypton Dimer (Kr₂⁺), Xenon Dimer (Xe₂⁺), Radon Dimer (Rn₂⁺) and Ununoctium Dimer (Uuo₂⁺) Molecular Cations. Chem Sci J. 7: 112.
27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.

43. Heidari A. 2016. Linear and Non-Linear Quantitative Structure-Anti-Cancer-Activity Relationship (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO$_2$) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs. J Integr Oncol. 5: 110.

52. Heidari A. 2016. Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). J Appl Computat Math. 5: 143.

54. Heidari A. 2016. A Comparative Study of Conformational Behavior of Isotretinoin (13-Cis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid (ATRA)) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and
69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx/xCu6-(SPh-tBu)24 to Au36-xAgx/xCu4,(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgx/xCu11,(SR)60, (SC6)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Us8)60, and (SC6H13)60 Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.

74. Heidari A. 2017. Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and $\text{Au}_{130}\text{(SR)}_{38}$, $\text{Au}_{228}\text{Ag}_{2}\text{(SR)}_{38}$, $\text{Au}_{144}\text{(SR)}_{60}$, $\text{Au}_{68}\text{(SR)}_{36}$, $\text{Au}_{30}\text{(SR)}_{18}$, $\text{Au}_{102}\text{(SPh)}_{44}$, $\text{Au}_{38}\text{(SPh)}_{24}$, $\text{Au}_{144}\text{(SR)}_{60}$, $\text{Au}_{68}\text{(SR)}_{36}$, $\text{Au}_{38}\text{(SPh)}_{24}$, $\text{Au}_{68}\text{S(SAdm)}_{15}$, $\text{Au}_{36}\text{(pMBA)}_{24}$ and $\text{Au}_{25}\text{(pMBA)}_{18}$ Nano Clusters. J Surgery Emerg Med 1: 21.

82. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer
Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.
95. Heidari A. 2017. Potency of Human Interferon β-1a and Human Interferon β-1b in Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy of Encephalomyelitis Disseminate/Multiple...
Sclerosis (MS) and Hepatitis A, B, C, D, E, F and G Virus Enter and Targets Liver Cells. J Proteomics Enzymol. 6: 1.

107. Heidari A. 2017. Therapeutic Nanomedicine Different High-Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time Using Mathematica...
111. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.
116. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kiloheertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.
119. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.

129. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.

133. Heidari A. 2018. A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign

143. Heidari A. 2018. Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Ann Biomet Biostat. 1: 1001.

146. Heidari A. 2018. Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCY), Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-

165. Heidari A. 2018. Cadaverine (1,5-Pentanediolamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.

170. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports. 1: 1-16.

181. Heidari A, Gobato R. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergid (Lysergic Acid Diethyl Amide or
LSD), Δ⁸-Tetrahydrocannabinol (THC) [(-)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 4: 1-17.

186. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education, 4: 46-67.

189. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.

191. Heidari A. 2018. A Novel Approach to Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and

www.raftpubs.com

204. Heidari A. 2018. 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One-Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules. Glob Imaging Insights. 3: 1-9.

Screening for Lung Cancer with Low Dose Computed Tomography (LDCT)

DOI: https://doi.org/10.36811/jca.2021.110029

238. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

243. Heidari A, Esposito J, Caissutti A. 2019. 6-Methoxy-8{[6-Methoxy-8{[6-Methoxy-2-Methyl-1-(2-Methylpropyl)-3,4- Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl} Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-ol Time-Resolved Absorption and Resonance FT-IR and Raman Spectroscopy.

Screening for Lung Cancer with Low Dose Computed Tomography (LDCT)

DOI: https://doi.org/10.36811/jca.2021.110029

JCA: November-2021: Page No: 794-832

Screening for Lung Cancer with Low Dose Computed Tomography (LDCT)

DOI: https://doi.org/10.36811/jca.2021.110029

Screening for Lung Cancer with Low Dose Computed Tomography (LDCT)

DOI: https://doi.org/10.36811/jca.2021.110029
JCA: November-2021: Page No: 794-832

www.raftpubs.com

www.raftpubs.com

Authors’ Brief Biographies
Prof. Dr. lirezA Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management, Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria, Australia and also in Nano chemistry and Modern Molecular Electronic-Structure Computations Theory from California South University (CSU), Irvine, California, USA. His research interests include Biophysical Chemistry, Biomolecular and Biomedical Spectroscopy, Quantum Chemistry, Nano chemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Chemistry, Computational Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry, Molecular Simulation, Pharmaceutical Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti-Cancer Nano Drugs, Nano Drugs Delivery, ATR-FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Biosensors, Biomarkers, Molecular Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylatation & Hypomethylatation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposims and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Netherlands, Belgium, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia, Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various disciplines and trends in different universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Synec, he has been awarded more than one thousand reputed international awards, prizes, scholarships and honors. Heretofore, he has multiple editorial duties in many reputed international and peer-reviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academic-scientific-research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

www.raftpubs.com
Elena Loci is a Ph.D. Candidate under the Supervision of Professor Alireza Haidari at Cancer Research Institute (CRI) and Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Silvia Raymond, Ph.D., D.Sc. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Haidari at Cancer Research Institute (CRI) and Bio Spectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.