Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

Alireza Heidari¹,²,³,⁴*, Margaret Hotz¹,²,³, Nancy MacDonald¹,²,³, Victoria Peterson¹,²,³, Angela Caissutti¹,²,³, Elizabeth Besana¹,²,³, Jennifer Esposito¹,²,³, Katrina Schmitt¹,²,³, Ling-Yu Chan¹,²,³, Francesca Sherwood¹,²,³, Maria Henderson¹,²,³ and Jimmy Kimmel¹,²,³

¹Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
²BioSpecktroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
³Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴American International Standards Institute, Irvine, CA 3800, USA

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Jul 26, 2021 / Accepted Date: Aug 04, 2021 / Published Date: Aug 09, 2021

Abstract
In the current research, removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations is investigated. The calculation of thickness and optical constants of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Dude-Lorentz model for parametric di-electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Levenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results.

Keywords: Removal; Nanocluster Rhenium (IV) Oxide (ReO₂); Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇); Thin Films, Delivery; DNA/RNA; Cancer Cells; Synchrotron and Synchrocyclotron Radiations
Removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO\(_2\)), Rhenium Trioxide (ReO\(_3\)) and Rhenium (VII) Oxide (Re\(_2\)O\(_7\)) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations.

Introduction

Removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO\(_2\)), Rhenium Trioxide (ReO\(_3\)) and Rhenium (VII) Oxide (Re\(_2\)O\(_7\)) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations is investigated. Rhenium (IV) Oxide (ReO\(_2\)), Rhenium Trioxide (ReO\(_3\)) and Rhenium (VII) Oxide (Re\(_2\)O\(_7\)) is a semi-conductor of type in which its 3d level is filling up [1-67] and it belongs to a group of smart materials that reacts to variations of temperature, electrical or magnetic fields and pressure. This oxide can be used as thin films for a wide range of applications including electrical and or optical-thermal switching tools and energy storing covers [67-103]. Therefore, determining optical constants (refractive coefficient, n, and extinction coefficient, k) of Rhenium (IV) Oxide (ReO\(_2\)), Rhenium Trioxide (ReO\(_3\)) and Rhenium (VII) Oxide (Re\(_2\)O\(_7\)) thin films is essential for designing optoelectronic and optical tools for producing optical covers and similar tools such as multilayer covers and filters [104-184]. The measured experimental parameters including optical reflectivity are used as a function of wavelength to determine optical parameters of thin layers [185-257]. For determining optical parameters, various physical models such as Kuschi, Frouhi-Blumber and Taw-Lorentz have been suggested to calculate refractive coefficient, n, and extinction coefficient, k. for any thin layer, an appropriate optical model should be selected and used for estimation of real and imaginary di-electric function according to its physical condition [258-313]. To do this, an initial guess is needed for parameters of dielectric function and thickness which is defined as a range regarding physical characteristics of thin film and the available results in the literature. Rhenium (IV) Oxide (ReO\(_2\)), Rhenium Trioxide (ReO\(_3\)) and Rhenium (VII) Oxide (Re\(_2\)O\(_7\))-removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO\(_2\)), Rhenium Trioxide (ReO\(_3\)) and Rhenium (VII) Oxide (Re\(_2\)O\(_7\)) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations are produced over glassy medium in sol-gel laboratory, Faculty of Chemistry, Bio
Spectroscopy Core Research Laboratory and Cancer Research Institute (CRI) at California South University, Irvine, California, USA, under similar conditions. Measurement of thin films are performed on four samples of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) as removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations with mole ratio of 0.5, 1 and 1.5% of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) [314-467]. Simulation of experimental spectra are performed using a single reflection spectrum of thin films and through Dude-Lorentz physical model in optimization process of Levenberg-Marquardt. Optical constants such as reflection coefficient n, extinction coefficient k, and layer thickness are simultaneously determined at wavelength of 400-1100 (nm).

Modeling, Simulation and Calculation Method

A usual method for describing optical constants of thin films is utilizing classic dispersion relationships based on di-electric function. One of the oldest and most applicable dispersion relationships is Drude-Lorentz di-electric equation which is based on the interaction between light and material. This relationship is shown in Eq. (1):

\[
\varepsilon = \varepsilon_\infty + \sum_{j=1} \frac{f_j E^2}{E^2 - E_0^2 + i \Gamma_j E} + \frac{E^2}{E^2 + i \varepsilon_\infty E^2}
\]

(1)

where \(\varepsilon_\infty\), \(f_j\), \(E_0\) and \(\Gamma_j\) are di-electric constant at high frequencies, resonance amplitude, power and resonance width-band which are recognized as the reason for damping. Damping is due to absorption process which includes transition between two states. The third term is related to Dude model. \(E_p\) is density of Plasma energy and \(E_r\) is incident energy [4]. The complex di-electric function as \(\varepsilon = \varepsilon_1 + i \varepsilon_2\) which describes the reaction of material with electromagnetic waves as a function of photon energy, \(E\), or wavelength, \(\lambda\), has a real part \(\varepsilon_1\) and an imaginary part \(\varepsilon_2\). Real and imaginary parts of complex reflection coefficient, namely \(n(\lambda)\) and \(k(\lambda)\) are related to di-electric function as Eq. (2) [5]:

\[
n(\lambda) = \left(\frac{\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{1/2}}{2} \right)^{1/2}
\]

(2)

\[
k(\lambda) = \left(\frac{-\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{1/2}}{2} \right)^{1/2}
\]

Reflection spectrum (R) of samples for normal incident is a function of film thickness d, medium reflection coefficient S, incident light wavelength \(\lambda\), reflection coefficient n(\(\lambda\)) and extinction coefficient k(\(\lambda\)). Simulation of the measured reflection data using optimization of objective function, which is the square of difference between the measured reflection spectrum and the calculated one, is defined as:

\[
O = (\varepsilon_{r,f}, \Gamma, E_0, E_p, E_r, d) = \sum (R_{\text{meas}} - R_{\text{calc}})^2
\]

(3)

where, \(R_{\text{meas}}\) and \(R_{\text{calc}}\) are the measured and theoretical reflection spectrum, respectively. Using the fitting parameters obtained from minimization of objective function, dispersion curves of reflection and extinction coefficients can be estimated.

Results and Discussion

The measured and simulated reflection spectra with fitting parameters of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇)-removal role, application and effect of nanocluster Rhenium...
Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

Figure 1: Results of simulating the reflection spectrum for Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations at various concentrations of 0.5, 1 and 1.5%, named as a, b, and c, and removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations sample, named as p, are shown in Figure (1) in wavelength range of 400-1100 (nm) (visible regions close to infrared) using Dude-Lorentz model for air, film, medium, air system.

Figure 1: Results of simulating the reflection spectrum for Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$)-removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations at various concentrations of 0.5, 1 and 1.5%, named as a, b, and c, and removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations sample, named as p, are shown in Figure (1) in wavelength range of 400-1100 (nm) (visible regions close to infrared) using Dude-Lorentz model for air, film, medium, air system.

As can be seen in Figure (1), the reflection of thin films is decreased by increase in mole concentration of Re to Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$). This reduction can be attributed to various reasons such as increasing roughness, increasing thickness and increasing the concentration of contaminant. The results of investigation about surface roughness using AFM method confirms the increasing of roughness by increasing the concentration of Re. Therefore, dispersion of incident light is increased in thin films. Variation of thickness of thin film by increasing the percentage of Re is effective in variation of reflectivity of thin films which is due to sol viscosity. Changing the crystalline structure and chemical composition of thin films induced by penetration of Re ions into the crystalline lattice of Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) is another effective factor which leads to changing the reflection spectrum. The results of structural analysis using XRD confirms the tendency to be amorphous by increasing the concentration of contaminant. The best fitting parameters obtained from optimization process and experimental data fitting are listed in Table (1).

<table>
<thead>
<tr>
<th>Parameter (sample p)</th>
<th>% 0.5 Rhenium (IV) Oxide (ReO$_2$)</th>
<th>1% Rhenium (IV) Oxide (ReO$_2$)</th>
<th>1.5% Rhenium (IV) Oxide (ReO$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 ReO$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% ReO$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5% ReO$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Fitting parameters of di-electric function of DL model.
As can be seen in Table (1), more increase in Re leads to increase in Γ, f, E_0 and d and decrease in other parameters as crystalline structure and inter-atom distance changes in lattice of Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) thin film. According to [7], E_0 in the range of 2.9-3.1 (eV) shows optical transition capacity band to displaced state of conducting band which according to the data of Table (1), it can be concluded that optical transition energy (gaff energy) increases with increase in Re concentration. The calculation results of optical constants including reflection coefficient and extinction coefficient using the parameters of obtained di-electric function from the optimization process of thin films at various concentrations of Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) as 0.5% (sample a), 1% (sample b) and 1.5% (sample c) are shown in Figures (2) and (3), respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ReO$_2$</th>
<th>ReO$_3$</th>
<th>Re$_2$O$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{∞}</td>
<td>6.5</td>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>E_p</td>
<td>3.8</td>
<td>3.75</td>
<td>3.65</td>
</tr>
<tr>
<td>E_T</td>
<td>3.4</td>
<td>3.4</td>
<td>3.35</td>
</tr>
<tr>
<td>f</td>
<td>4.3</td>
<td>4.25</td>
<td>4.15</td>
</tr>
<tr>
<td>E_0</td>
<td>6.5</td>
<td>6.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Γ</td>
<td>7.5</td>
<td>7.4</td>
<td>7.3</td>
</tr>
<tr>
<td>d (nm)</td>
<td>250</td>
<td>350</td>
<td>450</td>
</tr>
</tbody>
</table>

Figure 2: Reflection coefficient of Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) thin films with Re concentrations of (a) 0.5%, (b) 1%, (c) 1.5% and (p) pure sample.

Figure 3: Extinction coefficient of Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) thin films with Re concentrations of (a) 0.5%, (b) 1%, (c) 1.5% and (p) pure sample.

As can be seen in Figure (2), reflection coefficient of samples at 500-1100 (nm) are the same and are decreased by increasing wavelength. By increasing the concentration of
Re, reflection coefficient is totally reduced which is in good agreement with the results related to variations of reflectivity in Figure (1) in which, increasing roughness leads to increase in dispersion and hence, reducing the amount of reflection spectrum. It can be seen in Figure (3) that k(λ) for two samples of p and a are of increasing rate at wavelength range of 400-500 (nm). Further, all samples are of decreasing rate at the range of 500-800 (nm). Totally, k(λ) is reduced by increase in Re concentration. In other words, optical absorption is reduced in this range and the emerged peaks at extinction coefficient are in agreement with parameters of Dude-Lorentz obtained from the optimization algorithm.

Conclusions, Summary, Recommendations, Perspectives, Useful Suggestions and Future Studies

The results of optimization algorithm of Levenberg-Marquardt with physical model of Dude-Lorentz for determining optical constants of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇)-removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations produced using sol-gel method through a single reflection spectrum show that higher doping leads to lower reflectivity and reflection coefficient and also, leads to increase in thickness of thin layer.

Acknowledgement

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4-) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.
19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 7: 112.
27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of
Au38-xAgx/xCux(SPh-tBu)24 to Au36-xAgx/xCux(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgx/xCux[SR]60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60 Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.

80. Heidari A. 2017. Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in

www.raftpubs.com
the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation. Transcriptomics. 5: 117.
82. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.
92. Heidari A. 2017. A Comparative Computational and Experimental Study on
Different Vibrational Biospectroscopy Methods, Techniques and Applications for Human Cancer Cells in Tumor Tissues Simulation, Modeling, Research, Diagnosis and Treatment. Open J Anal Bioanal Chem. 1: 014-020.

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

111. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

115. Heidari A. 2017. Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the
Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

IJHO: August-2021: Page No: 150-194

116. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.

119. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.

www.raftpubs.com

129. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO\textsubscript{2}), Rhenium Trioxide (ReO\textsubscript{3}) and Rhenium (VII) Oxide (Re\textsubscript{2}O\textsubscript{7}) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

165. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.

170. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.

181. Heidari A, Gobato R. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(±)]
Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

www.raftpubs.com

200. Heidari A. 2018. FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of...

204. Heidari A. 2018. 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One-Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules. Glob Imaging Insights. 3: 1-9.

221. Heidari A. 2019. The Hydrolysis Constants of Copper (I) (Cu+) and Copper (II) (Cu2+) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques. Glob Imaging Insights. 4: 1-8.

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

www.raftpubs.com
Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

251. Heidari A, Esposito J, Caissutti A. 2019. The Importance of Analysis of

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

www.raftpubs.com

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

Page: 187

426. Heidari A. 2020. A Biospectroscopic and Bioimaging Analysis of Imatinib

www.raftpubs.com

Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

IJHO: August-2021: Page No: 150-194

with Size and Distance, Parana Journal of Science and Education (PJSE)-v. 7: 34-67.

www.raftpubs.com

Page: 189
Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

IJHO: August-2021: Page No: 150-194

Authors' Brief Biographies

www.raftpubs.com
Prof. Dr. Alireza Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management, Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria, Australia and also in Nanochemistry and Modern Molecular Electronic-Structure Computations Theory from California South University (CSU), Irvine, California, USA. His research interests include Biophysical Chemistry, Biomolecular Spectroscopy, Quantum Chemistry, Nanochemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Chemistry, Computational Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry, Molecular Simulation, Pharmaceutical Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti-Cancer Nano Drugs, Nano Drugs Delivery, ATR-FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Biosensors, Biomarkers, Molecular Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylation & Hypomethylation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposiums and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Netherlands, Belgium, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia, Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various disciplines and trends in different universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Syne, he has been awarded more than one thousand reputed international awards, prizes, scholarships and
Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

honors. Heretofore, he has multiple editorial duties in many reputed international and peer-reviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academic-scientific-research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Margaret Hotz, Ph.D. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Nancy MacDonald, Ph.D. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Victoria Peterson, Ph.D. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

www.raftpubs.com
Dr. Angela Caissutti, Ph.D. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Elizabeth Besana, Ph.D. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Jennifer Esposito, Ph.D. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Katrina Schmitt, Ph.D. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

www.raftpubs.com
Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO$_2$), Rhenium Trioxide (ReO$_3$) and Rhenium (VII) Oxide (Re$_2$O$_7$) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

DOI: https://doi.org/10.36811/ijho.2021.110013

IJHO: August-2021: Page No: 150-194

Ling-Yu Chan is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Maria Henderson is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Francesca Sherwood is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Jimmy Kimmel is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

www.raftpubs.com