Aging is a condition in which the cell cycle is essentially irreversible and is caused by a variety of stressors such as obesity, radiation and chemotherapy. Aging cells that accumulate in the body during this period communicate with surrounding tissues through the production of proinflammatory proteins, called the SASP, and play a number of physiological and pathological roles. In the elderly, inflammatory agents of SASP increase various age-related diseases, including cancer; therefore, clarification of the SASP monitoring mechanism is essential for the development of new prevention and treatment strategies against age-related cancer. A group of Cancer Research Institute (CRI) of California South University researchers have hypothesized that the abnormal chromatin architecture observed in aging cells is related to SASP, and have begun analyzing chromatin interaction at the genome level and gene expression using next-generation sequencing techniques. They showed that the region containing the pericentromeric repetitive sequences called Human Satellite II (hSATII), which is genetically inactive in normal cells, has a significant state in aging cells; In addition, non-coding RNA expression (hSATII RNA) was significantly regulated during cellular aging. Further analysis showed that hSATII RNA regulated the expression of SASP-like inflammatory genes by disrupting chromatin interactions in some regions of the SASP gene through dysfunction of the CCCTC-binding factor (CTCF), which is important for maintaining genomic integrity. Small extracellular vehicles (EVs) secreted by cancer cells and stromal cells are dynamically involved in the development and progression of non-cellular tumors in the tumor microenvironment, and surprisingly more than the amount of hSATII RNA in small EVs caused by aging cells. Thus, our data suggest that hSATII RNA derived from aging stromal cells is transported to surrounding cells via small EVs and acts as an SASP-like inflammatory agent in the tumor microenvironment. In addition, the researchers found that hSATII RNA could be detected in cancer cells in surgical specimens of patients with primary colon cancer. Significantly, the population of hSATII-positive RNA cells was higher among cancer-
associated fibroblasts than in fibroblasts in normal stromal tissues. These findings demonstrate the new role of hSATII RNA, which supports non-cellular tumor growth by secreting inflammatory agents similar to SASPs and small EVs. Understanding this molecular mechanism could facilitate new preventive and therapeutic development and provide solutions for future age-related injuries.

Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening; Treatment; Management

Cite this article as: Alireza Heidari, Elena Locci, Silvia Raymond, et al. 2021. Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy. Int J Hematol Oncol. 4: 501-547.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari including melanoma; And the identified mechanisms can be targeted by treatment. Opening this pathway has highlighted new approaches that may be useful in treating advanced diseases. Contemporary therapies are evolving, and the important point is that these findings once again show why lowering cholesterol, whether with medication or diet modification, is a good idea for better health [1-490].

Results and Discussion

Immunotherapy helps strengthen the body's immune system to fight cancer cells. Immune checkpoints regulate the immune system, which are very important in preventing the body from attacking healthy cells. Some cancers bypass these checkpoints and allow the cancer cells to continue to spread from the bite detected by the immune system. Blocking an Immune Checkpoint (ICB) is a new treatment that can basically release the brakes on the immune system and help the body fight the disease again. ICB treatments are effective for some types of cancer, but they do not work for every patient. For example, only about 4 percent of patients with colorectal cancer, the second leading cause of cancer death in the United States, respond to ICB treatment.
Recent research has focused on ways to increase the potency of ICB therapies by combining them with chemotherapeutic agents such as computation. Although computation is strong, it is also unstable, has little solubility in water, and can have serious side effects on healthy cells. Using the nanotechnology delivery method, the researchers increased the ability of computation to integrate with ICB therapies and made them more effective against invasive tumors. This nano therapy platform was able to increase the effectiveness of ICB treatment to eradicate a large proportion of colorectal cancer tumors in the early stages, while simultaneously activating the body’s immune system and preventing tumor recurrence. Our research team linked computation to sphingomyelin, a natural fat found on the cell surface. Combining these two molecules into one nanoparticle improves treatment efficiency and reduces systemic toxicity. The nanotechnology-based drug delivery method also improved drug uptake in the rodent model, where penetration into the tumor is improved by efficient release of chemotherapy drug into the tumor.

Conclusion

The researchers tested the device on 90 people who had been screened for lung cancer and had remarkable results; the device detected almost 90% of cancer cases, however, researchers hope that better screening and diagnosis technologies can detect more cases of lung cancer earlier, which could greatly speed up patients' recovery. These results suggest that Delphi lung cancer screening technology can reduce lung cancer mortality by providing a high-performance, eligible trial to qualified individuals. We have already started enrolling 1,700 patients for testing and clinical evidence to finalize the commercialization of lung screening. Blood tests are much easier and more common than low-dose CT scans (LDCTs). Allows them to be tested at shorter intervals. It makes perfect sense to use artificial intelligence technology to identify tumor cells, and this is not the first time this feature has been used to diagnose cancer, and other systems have been able to diagnose colon cancer and breast cancer.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United States, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

18. Heidari A, 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4-) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.
19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 7: 112.
27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.
33. Heidari A. 2016. Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

63. Heidari A. 2016. Integrating Precision Cancer Medicine into Healthcare, Medicare

www.raftpubs.com
69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx/Cu(x)(SR)24 to Au36-xAgx/Cu(x)(SR)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgx/Cu(x)(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60 Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.
74. Heidari A. 2017. Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au329(SR)84, Au329-xAgx(SR)84, Au144(SR)60, Au68(SR)36, Au30(SR)18, Au102(SPh)44, Au38(SPh)24,
Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

90. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in S itu During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Austin J Anal Pharm Chem. 4: 1091.

Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.

Heidari A. 2018. Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy and
Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

127. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.

137. Heidari A. 2018. Heteronuclear Correlation Experiments such as
Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.

140. Heidari A. 2018. Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Pharma J. 1: 2-8.

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

160. Heidari A. 2018. Homonuclear Correlation Experiments such as Homonuclear Single-Quantum Correlation Spectroscopy (HSQC), Homonuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Homonuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation.

166. Heidari A. 2018. Gamma Linolenic Methyl Ester, 5-Heptadeca-5,8,11-Trienyl 1,3,4-Oxadiazole-2-Thiol, Sulphoquinovosyl Diacyl Glycerol, Ruscogenin, Nocturnoside B,
Combination Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Protodioscine, Parquisoside-B, Leiocarposide, Narangenin, 7-Methoxy Hesperin, Lupeol, Rosemariquinone, Rosmanol and Rosemadiol Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Int J Pharma Anal Acta. 2: 007-014.

173. Heidari A. 2018. Cadaverine (1,5-Pentamethylenediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.

www.raftpubs.com
178. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.

189. Heidari A, Gobato R. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(+)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 4: 1-17.

194. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nanotechnologies. Clin Med Rev Case Rep. 5: 228.

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Nan Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 6: 46-67.

197. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.

204. Heidari A. 2018. Curious Chloride (CmCl3) and Titanic Chloride (TiCl4)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics. J. Cancer Research and Therapeutic Interventions. 1: 01-10.

214. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. HIV and Sexual Health Open Access Open Journal. 1: 4-11.

219. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

235. Heidari A. 2018. Fucitol, Pterodactyladene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-8.

237. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation
Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

244. Heidari A. 2018. Small-Angle X-Ray Scattering (SAXS) and Ultra-Small Angle X-

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Page: 527

279. Heidari A, Esposito J, Caissutti A. 2019. The Quantum Entanglement Dynamics Induced by Non-Linear Interaction between a Moving Nano Molecule and a Two-Mode Field with Two-Photon Transitions Using Reduced von Neumann Entropy and Jaynes-
Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

287. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

www.raftpubs.com
Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

www.raftpubs.com

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Page: 535

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

420. Heidari A. 2020. Oncological Study of Thin Layers of Imatinib Molecule Nanostructure for Chronic Myelogenous Leukemia (CML), Acute Lymphocytic Leukemia (ALL), Philadelphia Chromosome-Positive (Ph+), Gastrointestinal Stromal Tumors (GIST), Hypereosinophilic Syndrome (HES), Chronic Eosinophilic Leukemia (CEL),

www.raftpubs.com
Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

IJOH: October-2021: Page No: 501-547

472. Heidari A, Hotz M, MacDonald N. 2021. Biocompatible Core–Shell Advanced Magnetic Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Rhodium (IV) Oxide (RhO₂) Nanoparticles for Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 126-162.

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

483. Heidari A, Hotz M, MacDonald N. 2021. Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Rhodium (IV) Oxide (RhO₂) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.

Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

IJHO: October-2021: Page No: 501-547

488. Heidari A, Hotz M, MacDonald N. 2021. Active Targeting of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Nanoparticles as Cancer Therapeutics Swell–up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.

Authors’ Brief Biographies

Prof. Dr. Alireza Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management, Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria, Australia and also in Nanochemistry and Modern Molecular Electronic–Structure Computations Theory from California South University (CSU), Irvine, California, USA. His research interests include Biophysical Chemistry, Biomolecular Spectroscopy, Quantum Chemistry, Nanochemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Chemistry, Computational Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry,
Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy

DOI: https://doi.org/10.36811/ijho.2021.110021

Molecular Simulation, Pharmaceutical Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti–Cancer Nano Drugs, Nano Drugs Delivery, ATR–FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Biosensors, Biomarkers, Molecular Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylation & Hypomethylation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposiums and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Netherlands, Belgium, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia, Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various disciplines and trends in different universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Syne, he has been awarded more than one thousand reputed international awards, prizes, scholarships and honors. Heretofore, he has multiple editorial duties in many reputed international and peer-reviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academic–scientific–research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Elena Locci is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.
Dr. Silvia Raymond, Ph.D., D.Sc. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.