Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

Alireza Heidari1,2,3,4, Elena Locci1,2,3 and Silvia Raymond1,2,3

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
3Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
4American International Standards Institute, Irvine, CA 3800, USA

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Sep 29, 2021 / Accepted Date: Oct 11, 2021 / Published Date: Oct 13, 2021

Abstract

The "labeling" of nucleic acids (cell genetic information such as RNA or DNA) is not a new technology for monitoring them. However, current capabilities do not provide a complete picture of how tumor cells develop. What this platform, known as Clon Mapper, can do that was not possible before, is to go back in time and track how tumor cells change over time. This gives researchers the ability to see which cells "win" over fewer resistant cells, continue to clone themselves, and make the tumor more dangerous. By isolating these cells, researchers can better test which therapies work against them. Monitoring changes over time is the key to successful transmission therapies. Tumor cells adapt and become resistant to therapies, which is why patients can recover but experience a relapse later. This is one of the reasons why cancer treatment is so challenging; we do not have very good methods for early detection of cells sensitive to a drug and measuring their resistance. This resistance is the main cause of treatment failure in many cancer patients. CLL is a low-grade B cancer that is often monitored for months or even years before active treatment is needed. This treatment depends a lot on the patient's close supervision. In this study, Clon Mapper focuses on identifying cells that mimic themselves, the speed at which this process takes place, and its effect on the growth rate of surrounding cells over time. This allows for a more accurate analysis of the cell population and may lead to more customized treatment plans for patients.

Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening; Treatment; Management

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari

www.raftpubs.com
Introduction

Angiosarcoma is an ultra-thin tumor that usually develops on the skin and is highly invasive. After metastasis, it is usually treated with chemotherapy, but the cancer's response to it is not long-term and angiosarcoma has a high mortality rate. Separate reports of angiosarcoma tumors responding to immunotherapy have been excluded from other clinical trials, but this marks the first prospective immunotherapy trial in the disease. The drug has been tested in 53 groups of rare cancer patients, but testing is still ongoing in 10 of these groups. Other rare cancers that have been successfully treated in the trial include thyroid tumors, metaplastic breast cancer, and neuroendocrine tumors. The trial has so far involved 773 patients and is approaching its ultimate goal of 818 patients. DC testing is supported by the NCI, led by SWOG, and conducted by the National Network of Clinical Trials (NCTN) with funding from the NIH. Outside of DART, the study of angiosarcoma took years to progress. Adding it to DART helped speed up the achievement of these results. During treatment, the size of the tumor shrank in at least six people, three of whom had criteria known as partial response to treatment, and one had complete response criteria. The other two patients had tumors that were stable after starting treatment. Both patients are still being treated for chronic disease. Among five patients with primary facial or scalp disease, three (60%) recovered with treatment. This is a subset of patients who have very little chance of receiving current treatment. Patients with immunosuppressive inhibitors often experience side effects, and the toxicity in this group of patients is comparable to the toxicity seen in other experiments with ipilimumab and nivolumab in sarcoma. Among these patients, 75% reported treatment-related adverse events and 25% reported treatment-related adverse events of grade 3 or higher [1-490].

Results and Discussion

The enzyme APOBEC3A is a vital part of the innate immune system that protects cells from viral infection by causing mutations and prevents viruses from multiplying; APOBEC3A, on the other hand, increases the level of DNA mutations by directly attacking the cancer cell genome, leading to cancer progression, metastasis, and drug resistance. In previous studies, we have shown that APOBEC3A-induced DNA mutations are very common in cancer patients. In fact, we have found that they are up to 80% present in certain types of cancer, such as lung, breast or bladder cancer. The study, entitled Genotoxic stress and viral infection causes transient mutations in APOBEC3A and proinflammatory genes through two distinct pathways, was published in the journal Nature. In this study, researchers transiently adjusted APOBEC3A for viral infection and genotoxic stress caused by chemotherapy drugs. Their work demonstrates how a viral infection triggers a specific innate immune response to activate APOBEC3A expression in human cells and how it is an important step in eliminating the virus; This study also shows how different chemotherapeutic drugs stimulate APOBEC3A, but increase the cancer invasion through a completely different type of immune response that this time triggers mutations. Our results show different methods for cells to regulate APOBEC3A expression to resolve the different types of stresses that a cell may face. By understanding how APOBEC3A-expressing cancer cells and viral infections are regulated, we are ready to take an important step toward developing new therapeutic strategies to combat cancer and new antiviral therapies. Further studies are needed to develop strategies to prevent APOBEC3A-induced DNA mutations in the cancer genome that increase tumor heterogeneity and increase disease progression and resistance to therapies. In the case of viral infections, the next step is to determine whether certain types of mutations previously

www.raftpubs.com
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

detected in viruses, such as SARS-Cov-2 (Covid-19), are the result of APOBEC3A activity and affect virus replication in cells.

Conclusion

While cancer vaccines are an antitumor treatment option, they should inhibit postoperative recurrence and metastasis by activating the patient's immune system. Therefore, it is important for scientists to find possible ways to train the patient's immune system to find these tumor cells. One option is to use the tumor tissue to make a vaccine for the patient, but because there is little difference between the tumor antigens and the body proteins, the tumor antigens may be considered "native" by the patient's immune system. Membrane-coated hybrid enzymes offer a new vaccine production strategy that simultaneously introduces antigens and adjuvants to the dendritic cell to stimulate tumor-specific immune responses. In mouse tumor models, the researchers found that the strategy protected the mouse by prolonging the survival of tumor-bearing animals and long-term protection against the challenge of tumor recurrence. Thus, this hybrid membrane-based anti-tumor immune system offers a new opportunity to develop personalized cancer vaccines that could target a wide range of tumors in the future.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca²⁺), Iron (II) (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄⁻) and Zinc (Zn²⁺) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.

19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2⁺), Neon Dimer (Ne2⁺), Argon Dimer (Ar2⁺), Krypton Dimer (Kr2⁺), Xenon Dimer (Xe2⁺), Radon Dimer (Rn2⁺) and Ununoctium Dimer (Uuo2⁺) Molecular Cations. Chem Sci J. 7: 112.

(CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment. Chemo Open Access. 5: 129.

27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.

39. Heidari A. 2016. Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of

54. Heidari A. 2016. A Comparative Study of Conformational Behavior of Isotretinoin (13-Cis Retinoic Acid) and Tretinoin (All-Trans

70. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx/xCux(SPh-tBu)24 to Au36-xAgx/xCux(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgx/xCux[(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (Uus)60 and (SC6H13)60] Nano Clusters as Anti-Cancer
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

71. Heidari A. 2017. Biomedical Resource Oncology and Data Mining to
72. Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical,
73. Chemical and Translational Research and Their Applications in Cancer Research.
74. Int J Biomed Data Min. 6: 103.
75. Heidari A. 2017. Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing,
76. Stability, Safety and Efficacy of Olympiadiane Nanomolecules as Agent for
77. Cancer Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy,
80. Heidari A. 2017. Opinion on Computational Fluid Dynamics (CFD)

www.raftpubs.com
90. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

and Treatment. Open J Anal Bioanal Chem. 1: 014-020.

www.raftpubs.com
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

IJHO: October-2021: Page No: 594-636

119. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (µHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

123. Heidari A. 2017. Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the...
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

124. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.

127. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.

www.raftpubs.com

137. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.

140. Heidari A. 2018. Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Pharma J. 1: 2-8.

156. Heidari A. 2018. Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

173. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.

177. Heidari A. Vibrational Biospectroscopic Studies on Anti-cancer
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

www.raftpubs.com

Page: 610

178. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.

189. Heidari A, Gobato R. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(-)-
trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 4: 1-17.

194. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchronyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.

196. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchronyclotron Radiations. Parana Journal of Science and Education. 6: 46-67.

197. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchronyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.

199. Heidari A. 2018. A Novel Approach to Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-

204. Heidari A. 2018. Curious Chloride (CmCl3) and Titanic Chloride (TiCl4) Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics. J. Cancer Research and Therapeutic Interventions. 1: 01-10.

208. Heidari A. 2018. FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of

214. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.

219. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.

Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations.

Biomembrane with a combination of the elements Be, Li, Se, Si, C and H. J Nanomed Res. 7: 241-252.

235. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.

237. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridyllic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 6: 46-67.

238. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

Page: 618

www.raftpubs.com

287. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

290. Gobato R, Gobato MRR, Heidari A. 2019. Evidence of Tornado Storm Hit the

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

471. Heidari A, Hotz M, MacDonald N. 2021. “Biopolymer Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Nanoparticles for Targeted Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 126-162.

472. Heidari A, Hotz M, MacDonald N. 2021. Biocompatible Core–Shell Advanced Magnetic Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Rhodium (IV) Oxide (RhO₂) Nanoparticles for Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 89-125.

473. Heidari A, Hotz M, MacDonald N. 2021. Targeted Biopolymeric Ruthenium (IV) Oxide (RuO₂) and Ruthenium (VIII) Oxide (RuO₄) Nanoparticles Loaded with Cetuximab and Decorated with Somatostatin Analogue to Colon Cancer under Synchrotron and
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

11. Heidari A, Hotz M, MacDonald N. 2021. Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Rhodium (IV) Oxide (RhO₂) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.

Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

IJHO: October-2021: Page No: 594-636

488. Heidari A, Hotz M, MacDonald N. 2021. Active Targeting of Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Nanoparticles as Cancer Therapeutics Swell–up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.

Authors’ Brief Biographies

Prof. Dr. Alireza Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management, Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria, Australia and also in Nanochemistry and Modern Molecular Electronic–Structure Computations Theory from California South University (CSU), Irvine, California, USA. His research interests include Biophysical Chemistry, Biomolecular Spectroscopy, Quantum Chemistry, Nanochemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Chemistry, Computational Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry, Molecular Simulation, Pharmaceutical Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti–Cancer Nano Drugs, Nano Drugs Delivery, ATR–FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Biosensors, Biomarkers, Molecular Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylation & Hypomethylation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposiums and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such

www.raftpubs.com
Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology

DOI: https://doi.org/10.36811/ijho.2021.110023

Elena Locci is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Silvia Raymond, Ph.D., D.Sc. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Netherlands, Belgium, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia, Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various disciplines and trends in different universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Syne, he has been awarded more than one thousand reputed international awards, prizes, scholarships and honors. Heretofore, he has multiple editorial duties in many reputed international and peer-reviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academic–scientific–research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.