Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

Alireza Heidari¹,²,³,⁴*, Elena Locci¹,²,³ and Silvia Raymond¹,²,³

¹Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
²BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
³Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴American International Standards Institute, Irvine, CA 3800, USA

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Sep 29, 2021 / Accepted Date: Oct 11, 2021 / Published Date: Oct 13, 2021

Abstract
The CARTITUDE-1 study is a stage 1B / II clinical trial. The trial targeted B-cell maturation antigen by targeting CAR-T cell therapy in patients with multiple myeloma who had received at least three previous lines of treatment with standard drugs, including proteasome inhibitors, immunosuppressive drugs, and CD38 antibodies. Cita-cel is made from the patient's own T cells, which is genetically engineered and is given as a single injection. The overall response rate to treatment was 97%, while the complete response rate and progression-free survival rate were 67% and 77%, respectively. The overall survival rate was 89%. Updates to this study were recently presented at the annual meeting of the American Clinical Oncology Association after our paper was accepted for publication in The Lancet. Our ASCO presentation showed a deeper response for patients receiving this treatment. These results are very impressive for patients with myeloma who have already undergone many treatment lines for their disease. It will be important to better understand the clinical features of patients who have experienced long-term recovery from this treatment and the mechanisms by which patients’ relapse. While it is not possible to formally conduct two separate single-arm studies on the idea of cells and cilia, the rate of dramatic response and progression-free survival of eyelash-treated patients is very interesting.

Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening; Treatment; Management

Cite this article as: Alireza Heidari, Elena Locci, Silvia Raymond, et al. 2021. Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer. Int J Hematol Oncol. 4: 680-725.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari

www.raftpubs.com
**Introduction**

According to the American Cancer Society, about 80% of breast cancers are hormone receptor positive, meaning that these cancer cells need estrogen or progesterone to grow. Doctors are currently treating people with breast cancer with positive estrogen receptors (ER+) using a treatment that inhibits both estrogen levels and cell cycle activity. While these treatments initially shrink tumors, about 90% of patients with metastatic and 50% of patients with stage 2 and 3 breast cancer develop resistance. If healthcare providers can detect the development of tumor resistance earlier, they can quickly shift gears and offer a different treatment regimen that can ultimately improve a patient with breast cancer. With the range of accurate medical tools available, medical professionals can measure a patient's response to treatment sooner to offer treatment options that may be beneficial to each patient. Alireza Heidari and his colleagues studied the evolution of DNA and RNA in breast tumor cells in postmenopausal women with ER+ breast cancer who enrolled in the FELINE test. These patients were treated with endocrine therapy alone (letrozole) in combination with a cyclin-dependent kinase inhibitor (CDK) (ribocyclib), a treatment that inhibits tumor cells from growing. Patients were treated to evaluate the response with targeted therapy in a new treatment condition, before surgery to remove the tumor. Tumors from more than 40 patients were processed and analyzed two weeks and six months after the start of endocrine and combination therapies. The researchers found that resistance cells that persist even after inhibition of endocrine and cellular therapy (CDK4/6) tend to replace their growth engine by using estrogen signaling with growth factor receptors and re-wiring cell cycle pathways. For example, resistant cells bypass alternative pathways by turning on alternative signaling pathways such as growth receptors and MAPK signaling. This re-wiring enables cancer cells to continue to grow despite estrogen inhibitors and the cell cycle. Targeting these resistance pathways with appropriate therapies may in the future help physicians treat ER+ resistant breast cancer patients in the early stages. Significant results indicate the emergence of specific alternating pathways in individual tumor cells that are resistant to CDK inhibitors and endocrine therapy. Findings from the study provide opportunities for targeted therapeutic interventions for treatment-resistant breast cancer. Understanding that tumor cells rapidly change signaling pathways and rewire so that they can survive neoadjuvant cancer after combined treatment enables scientists to design new treatment regimens that target tumor resistance. Alireza Heidari and colleagues are currently identifying drugs that block traits identified in resistant cancer cells. In the early stages of breast cancer, ER+ and PR+ (progesterone receptor positive) are often treatable, and we must continue this research to provide treatment strategies that deliver positive results over a long period of time. I recommend that, if possible, physicians continue to collect samples from the tumor so that we can know how the patient's tumors are responding by measuring the response of the cancer cells during treatment. In addition, we need to look at RNA changes, not just DNA modifications, because these changes may occupy resistance mechanisms more broadly [1-490].

**Results and Discussion**

Lung tumors are divided into different types such as small cell lung cancer, adenocarcinoma and squamous cell carcinoma. There are also many rare types of rare tumors. This diversity precludes rapid detection methods in everyday clinical practice. In addition to the type of tissue, tumor specimens should be comprehensively examined for some changes at the DNA level. Mutations that have activation mutations in the EGFR (epidermal growth factor) gene often respond well to
tyrosine kinase inhibitors, while non-EGFR mutant tumors or other tumors and mutations such as KRAS do not respond to the drug at all. Infrared imaging potential, abbreviated IR imaging, as a diagnostic tool for tissue classification, is called unlabeled digital pathology, as previously demonstrated in previous studies. This method detects cancerous tissue without previous staining or other symptoms and works automatically with the help of artificial intelligence (AI). Unlike methods prescribed for tumor shape and tissue mutations in everyday clinical practice, which can sometimes take several days, the new method only takes about half an hour. In these 30 minutes, not only can the tissue sample be detected to contain tumor cells, but also the type of tumor and whether it has a specific mutation. For the first time, we were able to identify spectral markers that allow us to differentiate spatially between different molecular conditions in lung tumors. An infrared spectroscopic measurement provides only sample information that would otherwise require several time-consuming methods. The results once again confirm the potential of unlabeled digital pathology for clinical use.

"To increase the reliability and improve the translation of the method as a new tool for diagnosis, studies with more patients tailored to clinical needs and external trials in everyday clinical practice are needed," says the director of the IR imaging project. In order to translate IR imaging into day-to-day clinical work, it is essential to shorten the measurement time, to ensure the simple operation of the measuring device, and to answer questions that are both clinically relevant and useful to patients.

Conclusion

Amyloid mimetic protein potentially eliminates the accumulation of cancer-associated p53 mutation and restores tumor suppressor function. In this study, published in the journal Nature, researchers present the process of using protein mimics to reactivate p53. The team first screened a set of protein mimics originally designed to target Alzheimer's disease and type 2 diabetes. The results identify a mimicry of the protein that potentially isolates the mutated p53 material and prevents further protein accumulation. The researchers then showed that segregation of mutant p53 grains by protein mimicking restored the suppressive function of p53 tumors, leading to the death of a wide range of cancer cells. Importantly, protein mimicry therapy effectively reduces tumors that contain mutated p53 while showing no significant toxins for healthy tissue, resulting in significantly longer survival. "As the prevalence of cancer increases worldwide, there is an urgent need for new cancer therapies to complement or replace existing therapies," said the study's lead author. Here we show the first successful use of a small molecule amyloid inhibitor as an anticancer agent. We believe that this will have a far-reaching impact, as it effectively bridges the gap between amyloid disease and cancer and is the basis for passing on information approaches in the design of new and robust cancer mutation therapies for the p53 mutation.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United States, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

IJHO: October-2021: Page No: 680-725

References

16. Heidari A. 2016. Quantitative Structure-Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Multiple Linear
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4-) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.

19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 7: 112.


27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedicine Biotherapeutic Discov. 6: 144.


60. Heidari A. 2016. Cancer Risk Prediction and Assessment in Human Cells under
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx/xCux(SPh-tBu)24 to Au36-xAgx/xCux(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgx/xCux[(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (SC6H13)60] Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

80. Heidari A. 2017. Opinion on Computational Fluid Dynamics (CFD)
90. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyanioline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Page: 689

www.raftpubs.com
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy of Encephalomyelitis Disseminate/Multiple Sclerosis (MS) and Hepatitis A, B, C, D, E, F and G Virus Enter and Targets Liver Cells. J Proteomics Enzymol. 6: 1.


www.raftpubs.com


119. Heidari A. 2017. Vibrational Decihertz (daHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.


124. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.


127. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmaco1 Pharm. 3: 1011.


137. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.


140. Heidari A. 2018. Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Pharma J. 1: 2-8.


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


www.raftpubs.com

Page: 694


166. Heidari A. 2018. Gamma Linolenic Methyl Ester, 5-Heptadeca-5,8,11-Trienyl 1,3,4-Oxadiazole-2-Thiol, Sulphoquinovosyl Diacyl Glycerol, Ruscogenin, Nocturnoside B, Protodioscine B, Parquisoside-B, Leiocarposide, Naranginenin, 7-Methoxy Hespertin, Lupeol, Rosemariquinone,
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Rosmanol and Rosemadiol Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Int J Pharma Anal Acta. 2: 007-014.


Heidari A. 2018. Fornacite, Orotic Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nanopolymeric Matrix (NPM). International Journal of Biochemistry and Biomolecules. 4: 1-19.


Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.


178. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.


189. Heidari A, Gobato R. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(+)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xanthine), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 4: 1-17.


196. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothece-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 6: 46-67.
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

197. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.


204. Heidari A. 2018. Curious Chloride (CmCl3) and Titanic Chloride (TiCl4)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics. J. Cancer Research and Therapeutic Interventions. 1: 01-10.
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


214. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.


219. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


235. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-8.


237. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) (\((3α,7α)-3,7,15\text{-Trihydroxy-12,13-Epoxytrichothece-9-En-8-One})-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 6: 46-67.

238. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric
Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.


257. Heidari A. 2018. Human Malignant and Benign Human Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

IJHO: October-2021: Page No: 680-725


www.raftpubs.com


287. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Analysis. Cientific Drug Delivery Research. 2: 11-16.


www.raftpubs.com


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Page No: 680-725


with Seaborgium Nanoparticles as Carriers and Nano-Enhanced Drug Delivery and Therapeutic in Cancer Treatment and Beyond under Synchrotron Radiation. Parana Journal of Science and Education. 6: 8-50.


415. Heidari A. In Situ Monitoring of Ritonavir Protective and Therapeutic Influence as a Potent Drug on Coronavirus Disease-2019

www.raftpubs.com
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


447. Heidari A, Gobato R. 2020. Exact NMR Simulation of Anti-Cancer Nano Drug-
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Page: 680-725


470. Heidari A, Hotz M, MacDonald N. 2021. Emerging Use of Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) Nanoparticles in Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management of Cancer under Synchrotron and
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025


[Heidari A, Hotz M, MacDonald N. 2021. “Biopolymer Rhenium (IV) Oxide (ReO₂), Rhenium Trioxide (ReO₃) and Rhenium (VII) Oxide (Re₂O₇) Nanoparticles for Targeted Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 126-162.

Heidari A, Hotz M, MacDonald N. 2021. Biocompatible Core–Shell Advanced Magnetic Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Rhodium (IV) Oxide (RhO₂) Nanoparticles for Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 89-125.

Heidari A, Hotz M, MacDonald N. 2021. Targeted Biopolymeric Ruthenium (IV) Oxide (RuO₂) and Ruthenium (VIII) Oxide (RuO₄) Nanoparticles Loaded with Cetuximab and Decorated with Somatostatin Analogue to Colon Cancer under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 52-88.


Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

(\text{RhO}_2) \text{ Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.}

484. Heidari A, Hotz M, MacDonald N. 2021. Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO\textsubscript{2}), Rhenium Trioxide (ReO\textsubscript{3}) and Rhenium (VII) Oxide (Re\textsubscript{2}O\textsubscript{7}) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 150-194.


488. Heidari A, Hotz M, MacDonald N. 2021. Active Targeting of Rhenium (IV) Oxide (ReO\textsubscript{2}), Rhenium Trioxide (ReO\textsubscript{3}) and Rhenium (VII) Oxide (Re\textsubscript{2}O\textsubscript{7}) Nanoparticles as Cancer Therapeutics Swell–up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.

489. Heidari A, Hotz M, MacDonald N. 2021. Ruthenium (IV) Oxide (RuO\textsubscript{2}) and Ruthenium (VIII) Oxide (Ru\textsubscript{2}O\textsubscript{7}) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. American Journal of Materials Engineering and Technology. 9: 1-20.


Authors’ Brief Biographies

Prof. Dr. Alireza Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management, Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria,
Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy for Identifying Chemical Changes Associated with Breast Cancer

DOI: https://doi.org/10.36811/ijho.2021.110025

Australia and also in Nanochemistry and Modern Molecular Electronic–Structure Computations Theory from California South University (CSU), Irvine, California, USA. His research interests include Biophysical Chemistry, Biomolecular Spectroscopy, Quantum Chemistry, Nanochemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Chemistry, Computational Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry, Molecular Simulation, Pharmaceutical Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti–Cancer Nano Drugs, Nano Drugs Delivery, ATR–FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Biosensors, Biomarkers, Molecular Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylation & Hypomethylation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposiums and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Netherlands, Belgium, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia, Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various disciplines and trends in different universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Syne, he has been awarded more than one thousand reputed international awards, prizes, scholarships and honors. Heretofore, he has multiple editorial duties in many reputed international and peer-reviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academic–scientific–research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.
Elena Locci is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.

Dr. Silvia Raymond, Ph.D., D.Sc. is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.