Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.11002

Alireza Heidari¹,²,³,⁴,*, Ricardo Gobato⁵,⁶ and Abhijit Mitra⁷

¹Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
²BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
³Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴American International Standards Institute, Irvine, CA 3800, USA
⁵Green Land Landscaping and Gardening, Seedling Growth Laboratory, Bela Vista do Paraíso, 86130-000, Parana, Brazil
⁶Secretary of Education and Sports of the State of Parana, Laboratory of Biophysics and Molecular Modeling Genesis, Parana, 86130-000, Brazil
⁷Department of Marine Science, University of Calcutta, 35 B. C Road, Kolkata, 700019, West Bengal, India

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, email id: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Nov 30, 2021 / Accepted Date: Dec 15, 2021 / Published Date: Dec 20, 2021

Abstract

In this recent study, DNA data from 900 patients with colorectal cancer were reviewed. Analysis of the data showed a distinct mutation signature, a pattern that had never been identified before but indicated a type of DNA damage called "alkylation." Red meat contains chemicals that can cause alkylation. High levels of tumor alkylation damage are seen only in patients who consume an average of more than 150 grams of meat per day, roughly equivalent to two or more meals. On the other hand, a group of researchers in 2019 in a controversial conclusion stated that they do not have much confidence in reducing deaths from colon cancer by avoiding red meat.

Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management

Cite this article as: Alireza Heidari, Ricardo Gobato, Abhijit Mitra. 2021. Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage. O J Radio Med Img. 4: 342-382.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari

Introduction

Consumption of red meat is less recommended in medical standards for the prevention of colon cancer, but the method of cell mutation is still unknown and all experts are convinced that these two factors are related. A new article in Cancer Discovery now identifies specific patterns of DNA damage from red meat-rich diets, in addition to treating the food as carcinogenic and increasing the likelihood of
early detection of cancer. Introduces a new treatment method. Previous research has been largely epidemiological, meaning that people with the disease have been examined for eating habits, and researchers have found an association with the incidence of colon cancer. In 2019, a team of researchers, despite not being 100% sure, created a new wave when they announced that reducing meat consumption could prevent death from bowel cancer. When we say that red meat is carcinogenic and causes cancer It must be that there must be a good reason for doing so; Scientists have long ago discovered which chemical in cigarette smoke can cause cancer and how certain groups of ultraviolet light penetrate the skin and cause mutations in genes that control how cells grow and divide. Analysis of a symptom showed a distinct mutation, a pattern that had never been identified before, but indicated a type of DNA damage called "alkylation." Not all cells containing these mutations will necessarily become cancerous, and this symptom was present in some colon samples. The sign of the mutation before the patient was diagnosed with cancer was related to the consumption of processed and unprocessed red meat, not to the consumption of poultry, fish or other lifestyle factors that were examined. Some chemicals can cause alkylation by consuming red meat. Specific compounds are nitrogenous compounds that can be produced from each other, which are abundant in red meat, as well as nitrates, which are often found in processed meat. In this study, mutation patterns were strongly associated with the colon, the lower part of the intestine leading to the anal canal, where previous research has shown that red meat-related colon cancer is more common; In addition, among the genes most affected by alkylation were genes that, according to previous research, were the most important causes of colorectal cancer during mutations. Compared to patients with lower injury rates, they are 47% more likely to die from colon cancer [1-567].

Results and Discussion

Intestinal polyp is a pre-cancerous fleshy lesion that takes an average of about 10 years to develop into colon cancer. About 5 to 10 percent of polyps usually develop into cancer. Also, in people over 50, between 20 and 30%, intestinal polyp lesion occurs and it is necessary to examine and remove this lesion, because if the intestinal polyp remains in the body, it increases the risk of cancer. Polyps can be easily seen through screening, and with the help of colonoscopy we can remove this lesion from the body. Screening programs are required for people over the age of 50 and healthy people who have no symptoms or family history of the disease. With this method, we can identify and treat polyps. There are two methods for screening: One is a stool test, which is a home comfort test. If the test is positive, the person must remove the lesion with a colonoscopy, and if the test is negative, the person must repeat the test again the following year. The next method, which is much more accurate, is a colonoscopy, which should be performed every 10 years. This method easily identifies polyps and removes them from the body, and also diagnoses cancer at an early stage. Age is the most important cause of colon polyps. Age over 50 is a risk factor for this disease. Another factor that causes intestinal polyps is inactivity and obesity. People who are not active enough are more prone to polyps and bowel cancer than others. Foods such as red meat and fatty foods can also increase the risk of intestinal polyps, but fresh fruits and vegetables reduce the risk of intestinal polyps. Genetic factors are also a cause of intestinal polyps. People with a family history of polyps or bowel cancer are more likely to get the disease than normal people. There are currently the best colorectal cancer screening and prevention programs that identify cancerous lesions 10 years before they occur.

Conclusions

Future research may help physicians determine which patients are genetically predisposed to alkylation damage, so we are advised to reduce
their red meat intake. Identifying patients who have already shown symptoms of the mutation can help identify those who are at higher risk for cancer or early-stage disease, and since alkylation damage appears to indicate survival, it can be used to tell patients' prognosis. Finally, understanding the biological pathway through which colon cancer occurs paves the way for drugs that stop or reverse the process and prevent the disease. The message of this study is not that people should avoid red meat altogether: My advice is to have a balanced diet.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United States, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

14. Heidari A. 2016. Biospectroscopic Study on Multi-Component Reactions (MCRs) in Two A-Type and B-Type Conformations of Nucleic
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes as Anti-Cancer Drugs. Arch Cancer Res. 4: 2.
18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4-) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.
19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 7: 112.
27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.
Combined Theoretical and Computational Study. Transl Biomed. 7: 2.

45. Heidari A. 2016. Coplanarity and Collinearity of 4'-Dinonyl-2,2'-Bithiazole in One Domain of Bleomycin and Pingyangmycin to be Responsible for Binding of Cadmium
52. Heidari A. 2016. Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). J Appl Computat Math. 5: 143.
63. Heidari A. 2016. Integrating Precision Cancer Medicine into Healthcare, Medicare
69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgxxCux(SPh-tBu)24 to Au36-xAgxxCux(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgxxCux(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (U)60 and (SC6H13)60 Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.

82. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamiline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.

88. Heidari A. 2017. Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Lung Cancer Translational Anti-Cancer Nano Drugs Delivery Treatment Process under
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

100. Heidari A. 2017. Pros and Cons Controversy on Molecular Imaging and Dynamics of Double-Standard DNA/RNA of Human Preserving Stem Cells-Binding Nano Molecules with Androgens/Anabolic Steroids

111. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptoherz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.11002

8

OJRMI: December-2021: Page No: 342-382

www.raftpubs.com

116. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZH2) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.

119. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.

129. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.

149. Heidari A. 2018. Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.11002
OJRMI: December-2021: Page No: 342-382

165. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations.

170. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports. 1: 1-16.

173. Heidari A. 2018. C70-Carboxyfullerenes Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.11002
OJRMI: December-2021: Page No: 342-382

181. Heidari A, Gobato R. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(±)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xanthose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 4: 1-17.

186. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano
Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-8.

188. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridilyd Acid or Deoxyuridy late) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichotheec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 4: 46-67.

189. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickie and Josiphs Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.

204. Heidari A. 2018. 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules. Glob Imaging Insights. 3: 1-9.

Quantum Chemistry and Molecular Spectroscopy. 2: 9-17.

221. Heidari A. 2019. The Hydrolysis Constants of Copper (I) (Cu+) and Copper (II) (Cu2+) in Aqueous Solution as a Function of pH

238. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.11002

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.11002

Page: 372

www.raftpubs.com
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

Lysergide (Lysergic Acid Diethyl Amide or LSD), δ9-Tetrahydrocannabinol (THC) [(−)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Ely J Mat Sci Tech. 1: 1-2.

www.raftpubs.com
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.11002
OJRMI: December-2021: Page No: 342-382

www.raftpubs.com
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

DOI: https://doi.org/10.36811/ojrmi.2021.110028

OJRMI: December-2021: Page No: 342-382

Page: 377

www.raftpubs.com
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

488. Heidari A, Hotz M, MacDonald N, et al. 2021. Active Targeting of Rhenium (IV) Oxide (ReO2), Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (Re2O7) Nanoparticles as Cancer Therapeutics Swell-up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

www.raftpubs.com
Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

542. Heidari A, Locci E, Raymond S. 2021. The Strong, Highly Amplifying Binding of NUP98–HOXA9 Proteins to DNA Leads to Greater Activity of This Agent Which Predisposes to

Indication of a Type of DNA Damage Called "Alkylation" as High Levels of Tumor Alkylation Damage

