Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

Alireza Heidari¹,²,³,⁴,* Ricardo Gobato⁵,⁶ and Abhijit Mitra⁷

¹Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
²BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
³Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴American International Standards Institute, Irvine, CA 3800, USA
⁵Green Land Landscaping and Gardening, Seedling Growth Laboratory, Bela Vista do Paraíso, 86130-000, Parana, Brazil
⁶Secretary of Education and Sports of the State of Parana, Laboratory of Biophysics and Molecular Modeling Genesis, Parana, 86130-000, Brazil
⁷Department of Marine Science, University of Calcutta, 35 B. C Road, Kolkata, 700019, West Bengal, India

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, email id: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Nov 30, 2021 / Accepted Date: Dec 15, 2021 / Published Date: Dec 20, 2021

Abstract

According to the results of a global phase 2 clinical trial, the new drug sotorasib reduces tumor size and promises to improve and increase survival in patients with lung tumors caused by specific DNA mutations. It is designed to counteract the effects of mutations that are seen in about 13% of patients with non-small cell lung adenocarcinoma (a common type of lung cancer). The Food and Drug Administration (FDA) on May 28 approved the drug as a targeted treatment for patients with small cell lung cancer whose tumors express a specific mutation called G12C in the KRAS gene. Small cell lung cancer accounts for more than 80% of lung cancers. More than 200,000 new cases of non-small cell lung cancer are diagnosed in the United States each year.

Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management

Introduction

The new drug addresses the unmet needs of these patients and targets the most common mutation. We are also reviewing this drug in combination with other experimental drugs to see if we can further improve responses and survival. This drug is for those patients whose tumors are difficult to treat and for whom we have not provided targeted therapies. The study included 126 patients with non-small cell lung
cancer who had specific mutations in the KRAS gene. A DNA error inhibits an important protein structure and puts cysteine where glycine should be. Mutated tumors produce a copy of the KRAS protein that is almost continuously active and promotes tumor growth. Sotorasib, taken orally daily, inhibits tumor growth by inactively trapping KRAS protein. Most patients in this trial have already received standard chemotherapy with an immunotherapy drug that targets a protein called PD-1. To evaluate this new treatment, all patients enrolled in this study were treated with sotorasib. Phase 2 trials evaluating safety and efficacy often do not include the placebo group. It inhibited tumor spread in 102 of 126 patients (82%). About 37% of patients' tumors shrink by at least 30% in size. In contrast, the response rate to standard treatment in these patients is from 6% to 20%. Forty-two patients (34%) showed a relative response to treatment, meaning that the tumor was significantly smaller and its growth was controlled for some time, and four patients (3%) showed a complete response, leaving no evidence of disease. For tumors that have shrunk, on average, about 60% of the tumor shrinks. The effects of sotorasib lasted an average of 11 months, the drug showed no progression survival, patients with this type of lung cancer receiving standard treatment have an average progression of two to four months without progression. The mean overall survival of patients in this experiment was 12 months [1-567].

Results and Discussion

The excitement of this test result is that sotorasib is currently the first targeted treatment for lung cancer patients. KRAS-targeted treatments are needed for these patients with limited immediate treatment options. About 7% of patients stopped sotorasib treatment due to severe side effects, but no life-threatening side effects and no disease died as a result of treatment. This drug caused severe side effects that required a reduction in the dose of the drug in about 22% of patients. Approximately 70% of patients experienced some drug-related side effects. The most common of these were diarrhea, fatigue, nausea, and elevated liver enzyme levels, which is an indicator of liver damage. Moving forward, the team is working to learn about the development of combination therapies with sotorasib and other emerging drugs, and to determine which direction is best for each patient's cancer cells. Researchers are currently conducting a phase 3 clinical trial to compare the effectiveness of sotorasib with a chemotherapy drug called docetaxel in 345 patients with non-small cell lung cancer and this KRA mutation.

Conclusions

We hope this approach is a new option for patients with lung cancer who are driven by this particular type of KRAS gene mutation. KRAS gene modification has long been unacceptable for targeted therapies. A number of combination diets are being tested here at the Cancer Research Institute (CRI) and other leading cancer centers around the world. These are highlights of what the California South University (CSU) has done in the past to study the genomic variations of tumors to identify therapeutic targets; This preliminary research on the cancer genome is now in full swing to help our patients.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United States, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

Oxide (CdO) Nanoparticles for Eliminating Cancer Cells. J Nanomod Res. 2: 5.

18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca²⁺), Iron (II) (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄⁻) and Zinc (Zn²⁺) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.

www.raftpubs.com
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

(He2+), Neon Dimer (Ne\textsubscript{2}+), Argon Dimer (Ar\textsubscript{2}+), Krypton Dimer (Kr\textsubscript{2}+), Xenon Dimer (Xe\textsubscript{2}+), Radon Dimer (Rn\textsubscript{2}+) and Ununoctium Dimer (Uuo\textsubscript{2}+) Molecular Cations. Chem Sci J. 7: 112.
24. Heidari A. 2016. A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh\textsubscript{2}O\textsubscript{3}) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment. Chemo Open Access 5: 129.
27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

50. Heidari A. 2016. A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function...
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

DOI: https://doi.org/10.36811/ojrmi.2021.110029
OJRMI: December-2021: Page No: 383-423

approximation (gfa) algorithm. j mol biol biotechnol. 1: 1.
51. a. heidari, “computational study on molecular structures of c20, c60, c240, c540, c960, c2160 and c3840 fullerene nano molecules under synchrotron radiations using fuzzy logic”, j material sci eng 5: 282, 2016.
52. heidari a. 2016. graph theoretical analysis of zigzag polyhexamethylene biguanide, polyhexamethylene adipamide, polyhexamethylene biguanide gauze and polyhexamethylene biguanide hydrochloride (phmb) boron nitride nanotubes (bnnt’s), amorphous boron nitride nanotubes (a-bnnts) and hexagonal boron nitride nanotubes (h-bnnts). j appl computat math. 5: 143.
53. heidari a. 2016. the impact of high-resolution imaging on diagnosis. int j clin med imaging 3: 101.
54. heidari a. 2016. a comparative study of conformational behavior of isotretinoin (13-cis retinoic acid) and tretinoin (all-trans retinoic acid (atra)) nano particles as anti-cancer nano particles under synchrotron radiations using hartree-fock (hf) and density functional theory (dft) methods. insights in biomed. 1: 2.
55. heidari a. 2016. advances in logic, operations and computational mathematics. j appl computat math. 5: 5.
56. heidari a. 2016. mathematical equations in predicting physical behavior. j appl computat math. 5: 5.
57. heidari a. 2016. chemotherapy a last resort for cancer treatment. chemoo open access. 5: 4.
58. heidari a. 2016. separation and pre-concentration of metal cations-dna/rna chelates using molecular beam mass spectrometry with tunable vacuum ultraviolet (uv) synchrotron radiation and various analytical methods. mass spectrom purif tech. 2: 101.
60. heidari a. 2016. cancer risk prediction and assessment in human cells under synchrotron radiations using quantitative structure activity relationship (qsar) and quantitative structure properties relationship (qspr) studies. int j clin med imaging. 3: 516.
62. heidari a. 2016. innovative biomedical equipment’s for diagnosis and treatment. j bioengineer & biomedical sci. 6: 2.
64. heidari a. 2016. promoting convergence in biomedical and biomaterials sciences and silk proteins for biomedical and biomaterials applications: an introduction to materials in medicine and bioengineering perspectives. j bioengineer & biomedical sci. 6: 3.
65. heidari a. 2017. x-ray fluorescence and x-ray diffraction analysis on discrete element modeling of nano powder metallurgy processes in optimal container design. j powder metall min. 6: 1.

www.raftpubs.com

69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx/Cux(SPh-tBu)24 to Au36-xAgx/Cux(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgx/Cux(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Us)60 and (SC6H13)60 Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.

79. Heidari A. 2017. The Design Graphene-Based Nanosheets as a New Nanomaterial in
Anti-Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti-Cancer Nano Drugs and Gene Delivery. Br Biomed Bull. 5: 305.
82. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.
104. Heidari A. 2017. Time-Resolved Spectroscopy and Time-Stretch Spectroscopy Comparative Study on Malignant and Benign...
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Enliven: Pharmacovigilance and Drug Safety. 4: 1.

111. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

119. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.
129. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

163. Heidari A. 2018. Fornacite, Orotic Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nanopolymeric Matrix (NPM). International
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

165. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.
170. Heidari A. 2018. Uranocene (U(C8H8)2 and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports. 1: 1-16.
176. Heidari A. 2018. Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

188. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylid Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothece-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and

189. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.

198. Heidari A. 2018. C60 and C70- Encapsulating Carbon Nanotubes Incorporation
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Integr Mol Med. 5: 1-8.

204. Heidari A. 2018. 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylene-cyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylene-cyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylene-cyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylene-cyclopentyl)-1H-Purin-6(9H)-One-Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules. Glob Imaging Insights. 3: 1-9.

221. Heidari A. 2019. The Hydrolysis Constants of Copper (I) (Cu⁺) and Copper (II) (Cu²⁺) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques. Glob Imaging Insights. 4: 1-8.

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

238. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

www.raftpubs.com

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

www.raftpubs.com
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

www.raftpubs.com
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

449. Heidari A, Gobato R. 2020. DNA/RNA of Gum Cancer Cells-Anti-Cancer Nano Drugs Ligands Structure Determination with the Two-

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

483 Heidari A, Hotz M, MacDonald N, et al. 2021 Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.

488. Heidari A, Hotz M, MacDonald N, et al. 2021 Active Targeting of Rhenium (IV) Oxide (ReO2), Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (ReO27) Nanoparticles as Cancer Therapeutics Swell-up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.

489. Heidari A, Hotz M, MacDonald N, et al. 2021 Ruthenium (IV) Oxide (RuO2) and Ruthenium (VIII) Oxide (Ru04) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer
Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

www.raftpubs.com

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment

Significant Role of Nanoparticles as a Drug Delivery System for Cancer Treatment
