Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Alireza Heidari¹,²,³,⁴,*, Ricardo Gobato⁵,⁶ and Abhijit Mitra⁷

¹Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
²BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
³Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴American International Standards Institute, Irvine, CA 3800, USA
⁵Green Land Landscaping and Gardening, Seedling Growth Laboratory, Bela Vista do Paraíso, 86130-000, Parana, Brazil
⁶Secretary of Education and Sports of the State of Parana, Laboratory of Biophysics and Molecular Modeling Genesis, Parana, 86130-000, Brazil
⁷Department of Marine Science, University of Calcutta, 35 B. C Road, Kolkata, 700019, West Bengal, India

*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, email id: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Received Date: Nov 30, 2021 / Accepted Date: Dec 15, 2021 / Published Date: Dec 20, 2021

Abstract
Researchers have discovered an enzyme that inhibits the growth of cancer cells by stimulating proteins. In this study, the ability of each human cell to divide into two parts is discussed. For each division, a cell must follow certain steps, most of which are amplified by proteins called cyclins.

Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari

Introduction

The present study dealt with three type D cyclins. This subset, if cells divide, must interact with enzymes called cyclin-dependent kinases (CDKs), especially CDK4 and CDK6. The authors found that AMBRA1, as a ligase, binds molecular tags to all three type D cyclins and labels them for degradation. Mechanisms previously proposed for how cells remove type D cyclins cannot be produced by the scientific community. Prior to the new study, the central regulator of type D cyclines remained unattainable for a quarter of a century, according to Pagano. The new work also demonstrated the role of AMBRA1 in development. Mice lacking the AMBRA1 gene produced uncontrollable and lethal growth of tissue that distorts the growing brain and spinal cord. The researchers also found for the first
time that treatment with pregnant CDK4 / 6-blocking mice carrying the fetus without the AMBRA1 gene would reduce these neurological abnormalities. In terms of cancer, the researchers analyzed patient data and concluded that those whose expression in AMBRA1 was lower than normal were less likely to survive in large B-cell lymphoma. Causes of AMBRA1 lower expression may include accidental changes that delete the gene or make it difficult to read encrypted instructions [1-567].

Results and Discussion

To confirm the role of AMBRA1 as a tumor suppressor, examined the growth of cancer cells in B-cell lymphoma models. For example, when human B-cell lymphoma cells were transplanted into mice, tumors without the AMBRA1 gene grew three times faster than those with the gene. In addition, type D cyclins have been shown to convert to enzymes with CDK4 and CDK6, which increase the growth of normal and abnormal cells. Drugs that inhibit CDK4 and CDK6 have been approved by the FDA in recent years as cancer treatments, but some patients have a weaker response to the drugs. Realizing this problem, the current team found that AMBRA1-free lymphomas were less sensitive than CDK4 / 6 inhibitors. When the AMBRA1 gene is destroyed, the level of type D cyclins is high enough that they can form a complex with another CDK (CDK2) that, due to its structure, is not inactivated by CDK4 / 6 inhibitors.

Conclusions

This study showed that an enzyme called AMBRA1 tags a key class of cyclins for degradation by cellular devices that break down proteins. This suggests that enzyme control of cyclins is essential for proper cell growth during embryonic development, and that improper functioning causes overgrowth of lethal cells; In addition, the above study suggests that an existing drug group may be able to reverse such defects in the future. As in a growing fetus, restriction on cell division is essential to prevent the abnormal and aggressive growth seen in cancer. This study shows that cells have evolved to use AMBRA1 to defend against it. Our Study Key Features It illuminates human cells, provides insight into the biology of cancer, and opens up new research avenues for potential therapies.

Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

18. Heidari A. 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4-) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.
19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 7: 112.
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

(BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage. Struct Chem Crystallogr Commun. 2: 1.
27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

DOI: https://doi.org/10.36811/ojrmi.2021.110038

OJRMI: December-2021: Page No: 742-781

www.raftpubs.com

49. Heidari A. 2016. DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives. Biomedical Data Mining. 5: 78.

52. Heidari A. 2016. Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). J Appl Computat Math. 5: 143.

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

69. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgxxCux(SPh-tBu)24 to Au36-xAgxxCux(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgxxCux[(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60] Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6: 3.

www.raftpubs.com
82. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyaniline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.

94. Heidari A. 2017. Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta-2 Transferrin and Bacterioferritin-Based Anti-Cancer Nano Drugs Encapsulating Nanosphere as DNA-
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

111. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

116. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.

119. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.
129. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res. 3: 555603.
132. Heidari A. 2018. Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy
143. Heidari A. 2018. Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Ann Biomet Biostat. 1: 1001.
145. Heidari A. 2018. Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blastoma...
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

www.raftpubs.com

165. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.

www.raftpubs.com
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

170. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports. 1: 1-16.

186. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebracon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-8.

188. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 4: 46-67.

189. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.

www.raftpubs.com

204. Heidari A. 2018. 2-Amino-9-(((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2- Methylene cyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-(((1R, 3R, 4R)-4-Hydroxy-3- (Hydroxymethyl)-2-Methylene cyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-(((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2- Methylene cyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-(((1S, 3R, 4S)-4-Hydroxy-3- (Hydroxymethyl)-2-Methylene cyclopentyl)-1H-Purin-6(9H)-One-Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules. Glob Imaging Insights. 3: 1-9.

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

221. Heidari A. 2019. The Hydrolysis Constants of Copper (I) (Cu⁺) and Copper (II) (Cu²⁺) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques. Glob Imaging Insights. 4: 1-8.
228. Heidari A, Esposito J, Caissutti A. 2019. The Importance of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Biospectroscopy of Single-Walled Carbon Nanotubes (SWCNT) and.

238. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

www.raftpubs.com

Page: 762

Tirupur District, Tamil Nadu, India “”, Water and Energy International. 62: 63-68.

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Analysis. Cientific Drug Delivery Research. 2: 11-16.
281. Heidari A, Esposito J, Caissutti A. 2019. 6-Methoxy-8-[(6-Methoxy-8-[(6-Methoxy-2-Methyl-1-(2-Methylpropyl)]-3,4-Dihydro-1H- Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-ol Time-Resolved Absorption and Resonance FT-IR and Raman...
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

310. Heidari A, Esposito J, Caissutti A. 2019. Brevetoxin (a) and (b) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

www.raftpubs.com
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

DOI: https://doi.org/10.36811/ojrmi.2021.110038

340. Heidari A, Schmitt k, Henderson M, et al. 2019. Drug Delivery Describes the Method and Approach to Delivering Drugs or Pharmaceuticals and Other Xenobiotics to Their Site of Action within Radon Nanoparticles Effects on Human Gum Cancer Cells, Tissues and Tumors Treatment under...
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Therapeutic in Cancer Treatment and Beyond under Synchrotron Radiation. Parana Journal of Science and Education. 6: 8-50.

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Biomarkers Such as DNA/RNA for New Frontiers of Diagnostic Strategies for Prevention, Prognosis, Diagnosis and Treatment of Gum Cancer Tumor Metabolism", Dent Oral Maxillofac Res. 7: 1-2.

479. Heidari A. 2020. Effect of Temperature on DNA/RNA-Cadmium Oxide (CdO) Complex
Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

483 Heidari A, Hotz M, MacDonald N, et al. 2021. Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.

488. Heidari A, Hotz M, MacDonald N, et al. 2021. Active Targeting of Rhenium (IV) Oxide (ReO2), Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (Re2O7) Nanoparticles as Cancer Therapeutics Swell-up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins

Discovering and Engineering an Enzyme as Inhibitor for the Growth of Cancer Cells by Stimulating Proteins
