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Abstract 

The effect of mass on the behavior of oscillatory systems in a damped spring-mass system 

was studied using simulation. It was found that the mass affects the amplitude and 

displacement in the case of an undamped oscillatory system. In critically damped systems, 

the mass affects the displacement exponentially, and the system doesn’t oscillate. In the 

case of an overdamped system, there is also no oscillatory motion, and an increase in the 

mass was not affected, since the system gets to rest very quickly. The study shows that 

simulation can be a very helpful tool to study the behavior of oscillatory physical systems. 

Keywords: Simple harmonic motion damped mass-Spring system, simulation 

 

Introduction 
 

When the motion of an oscillator reduces due to an external force, the oscillator and its motion are damped. 

These periodic motions of gradually decreasing amplitude are damped simple harmonic motion. In the 

damped harmonic motion, the energy of the oscillator dissipates continuously. But for small damping, the 

oscillations remain approximately periodic. The forces which dissipate the energy are generally frictional 

forces. Many researchers made studies on simple harmonic oscillators experimentally [1-3], while others 

studied these oscillations theoretically [4-11]. The aim of this work was designed to investigate the effect 

of mass on the damping behavior of a simple harmonic oscillator using the simulation. The oscillating 

system is chosen to be a mass-spring system rather than a pendulum. The damped system depends on the 

damping coefficient, which in turn depends on the value of the mass, spring constant, and damping ratio. 

A damping ratio is a dimensionless number bigger than zero that depends on the state of the oscillating 

system, whether it is underdamped, over-damped, or critically damped. 
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Theory 

 

The equation of motion of a simple damped harmonic oscillator is given by the following expression
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Divide out the mass m. Now results have the equation in a convenient form to analyze. 

( ) ( ) ( )
( )

m

tF
txtx

t
tx

t
=+




+



 2

02

2

  

In case of: F = 0, the equation can be written as  
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This can be simplified as 

 

 

 

 

 

 

Here, it was noticed that each term has a factor of 1 , or 2
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That can gather these terms to get the following expression 
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The term 
2

0

2 4 − appears in various parts of the solution. It could be written in a simpler form by 

introducing the damping ratio 

02


  . 

Substituting  into the term above gives: 
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Further, that might simplify the solution by substituting  in terms of 0  and  , 
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Under damped Case (0<ζ<1) 

 

For an underdamped system, the damping ratio is between zero and one. This is the most common case and 

the only one that yields oscillation. 

If 0< 1 , then 
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ee  appearing in the above equation and by using the 

trigonometric identity, ( ) ( )xixe ix sincos += , it could be rewritten the solution in terms of cos. 
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The system oscillates at a natural frequency of 
2

0 1  − and decays at an exponential rate of 
0

1 . 

This type of system gives an oscillation response with exponential decay. Most of the natural systems 

oscillate in this way. The underdamped oscillation has its own frequency of oscillation called the “damping 

frequency”.  

Figure 1, shows the oscillation of a theoretical underdamped system. 

 

Figure 1: The theoretical underdamped case. 

Over damped Case (ζ>1) 

 In an over-damped system, the damping ratio is greater than 1. 

If 1 , then 12 −  is purely real and the solution can be rewritten as 
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Figure 2, shows the oscillation of a theoretical overdamped system. 

 

 

 

 

 

 

 

Figure 2: The theoretical overdamped case 

Critically Damped Case (ζ=1) 

For a critically damped system, the value of the damping ratio is equal to 1. In this case, also no oscillation 

occurs. 

If ζ=1, then the solution simplifies to ( ) ( )1_, 0
0 +=

−
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Figure 3, shows the critically damped oscillation. 

 

 

 

 

 

 

Figure 3: The theoretical critically damped case 

 

Results and Discussion  
 

The effect of varying the mass on the oscillatory behavior is discussed for the three cases. 

The underdamped case 

  

In this case, to study the effect of mass on the behavior of the oscillating system, the mass was varied from 

1 to 4 kgs, while the spring constant was held at 10 N/m and the damping ratio at 2.  

Figures 4, 5, 6, and 7were showed the effect of mass. It can be seen that there is an oscillating behavior for 

this type of damping and that as m becomes larger and larger, the amplitude decreases with time and there 

is a decrease in the displacement as a function of time. 

 

https://www.raftpubs.com/


LJBS, 2021                                       https://www.raftpubs.com/ 

                                                                                                                                              
 

   Volume 5 | Issue 2 | pg. 86 
 

 
Figure 4: m=1kg, k=10 N/m, c=2  Figure 5: m=2kg, k=10N/m, c=2 

  
 

Figure 6: m=3kg,k=10N/m,c=2 Figure7: m=4kg, k=10N/m, c=2 

 

The overdamped case 

 

In this case, to study the effect of mass on the behavior of the oscillating system, the mass was varied from 

100kgs to 250 kgs, while the spring constant was held at 225 N/m and the damping ratio at 600.  

Figures 8, 9, 10, and 11 were shown the effect of mass in this case. The main feature is that the system 

doesn’t oscillate at all, and there is no effect of increasing the mass because it is already overdamped and 

came to a complete rest. 

 

 

Figure 8: m=100kg,k=225N/m,c=600 Figure 9: m=150kg, k=225N/m, c=600  
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Figure 10: m=200kg, k=225N/m, c=600 Figure 11: m=250kg, k=225N/m, c=600 

 

The critically damped case 

 

 In this case, to study the effect of mass on the behavior of the oscillating system for this type of damping, 

the mass was also varied from 100kgs to 250 kgs, while the spring constant was held at 225 N/m and the 

damping ration at 300.  

 Figures 12, 13, 14, and 15 were shown the effect of mass in this case. The main feature is that the system 

also doesn’t oscillate and remains in its rest position, but as the mass increases, the displacement decreases 

more sharply, also in an exponential manner.  

 

 

Figure12: M=100kg,K= 225N/m, c= 300 Figure13: M= 150 kg, K= 225N/m, c= 300 

 

Figure 14: m=200 kg, K=225N/m,c= 300 Figure 15: m= 250 kg, K= 225N/m, c= 300 
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Conclusion 
 

It can be concluded from this study that there is an effect of increasing the mass on the behavior of 

oscillation in the underdamped case, as the amplitude decreases with time by increasing the mass, as well 

as the increase of mass affects the displacement inversely. In the case of overdamping, no effect is seen, 

while for the critically damped case, there is no oscillation, but the displacement decreases exponentially 

and sharply. This study shows that the tool of simulation is very helpful in studying the behavior of physical 

oscillatory systems in the case of simple harmonic damped systems. 
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